opencv检测图像直线】的更多相关文章

#include<opencv2/opencv.hpp> #include<iostream> using namespace std; using namespace cv; Mat src, dst; int main(void) { src = imread("..\\lineDetect.jpg"); if (src.empty()) { cout << "Loading image failed!" << e…
直接上代码,list_jian.txt为待检测图像路径列表 import cv2 import numpy as np import os for path in open("list_jian.txt"): path = path.replace('\n', '') #去除换行符号 img = cv2.imread(path, 1) width,height = img.shape[:2][::-1] img_resize = cv2.resize(img,(int(width*1.…
基于知乎上的一个答案.问题如下: 也就是在一张照片里,已知有个长方形的物体,但是经过了透视投影,已经不再是规则的长方形,那么如何提取这个图形里的内容呢?这是个很常见的场景,比如在博物馆里看到一幅很喜欢的画,用手机找了下来,可是回家一看歪歪斜斜,脑补原画内容又觉得不对,那么就需要算法辅助来从原图里提取原来的内容了.不妨把应用的场景分为以下: 纸张四角的坐标(图中红点)已知的情况 也就是上面的左图中4个红点是可以准确获取,比如手动标注,那么就简单了:用OpenCV的Perspective Trans…
原文链接:https://blog.csdn.net/liqiancao/article/details/55670749 介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪下来,这样除去大部分无关背景,应该可以提高识别率. 原图片举例(将红色矩形框部分裁剪出来)):  step1:加载图片,转成灰度图 image = cv2.imread("353.jpg&q…
  用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编…
原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 12 image = cv2.imread(args["image"]) 13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 14 15 # compute the Scharr gradient magnitude representatio…
计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别.行人检测等,国内的旷视科技.商汤科技等公司在该领域占据行业领先地位.相对于图像分类任务而言,目标检测会更加复杂一些,不仅需要知道这是哪一类图像,而且要知道图像中所包含的内容有什么及其在图像中的位置,因此,其工业应用比较广泛.那么,今天将向读者介绍该领域中表现优异的一种算算法——“你只需要看一次”(you only look once,yolo),提出该算法的作者风趣幽默可爱,其个人主页及论文风格显示了其性情,目前该…
用户在使用Android手机拍摄过程中难免会出现文本图像存在旋转角度.这里采用霍夫变换.边缘检测等数字图像处理算法检测图像的旋转角度,并根据计算结果对输入图像进行旋转矫正. 首先定义一个结构元素,再通过该结构元素对该图像进行开运算和闭运算(即腐蚀膨胀运算). Imgproc.cvtColor(matOri, matGray, Imgproc.COLOR_RGB2GRAY); Mat kernel = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_R…
我们在检测图像的边缘图时,有时需要检测出直线目标,hough变换检测出直线后怎么能更进一步的缩小区域呢?其中,可以根据距离来再做一判断,就涉及到了点与直线的距离问题. 点到直线距离代码如下: //=================================排除干扰直线============================================ // 根据中心点与直线的距离 排除干扰直线 // 点(x0,y0)到直线Ax+By+C=0的距离为d = (A*x0+B*y0+C)/s…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义  至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中"有趣"的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是"可重复性":同一…