k-近邻算法-手写识别系统】的更多相关文章

手写数字是32x32的黑白图像.为了能使用KNN分类器,我们需要把32x32的二进制图像转换为1x1024 1. 将图像转化为向量 from numpy import * # 导入科学计算包numpy和运算符模块operator import operator from os import listdir def img2vector(filename): """ 将图像数据转换为向量 :param filename: 图片文件 因为我们的输入数据的图片格式是 32 * 32…
前言 本文将继续讲解K-近邻算法的项目实例 - 手写识别系统. 该系统在获取用户的手写输入后,判断用户写的是什么. 为了突出核心,简化细节,本示例系统中的输入为32x32矩阵,分类结果也均为数字.但对于汉字或者别的分类情形原理都是一样的. 有了前面学习的基础,下面直接进入项目开发步骤. 第一步:收集并准备数据 在用户主目录的trainingDigits子目录中,存放的是2000个样本数据. 每个样本一个文件,其中一部分如下所示: 文件命名格式为: 分类标签_标签内序号 如 0_20.txt 就表…
实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*32像素的黑白图像. 当前使用文本格式存储图像,即使不能有效的利用空间,但是为了方便理解,还是将图像转换成文本格式. 示例:使用k-近邻算法的手写识别系统 (1)收集数据:提供文本文件. (2)处理数据:编写img2vector()函数,将图像格式转换成分类器使用的向量格式. (3)分析数据:在Pyt…
需要识别的数字已经使用图形处理软件,处理成具有相同的色 彩和大小® : 宽髙是32像 素 *32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内 存空间,但是为了方便理解,我们还是将图像转换为文本格式. 准备数据:将图像转换为测试向量 每个数字大约有200个样本:目录中包含了大约900个测试 数据.我们使用目录比testDigits的数据训练分类器,使用目录把testDigits的数据测试分类器 的效果.两组数据没有覆盖,你可以检查一下这些文件夹的文件是否符合要求. 我们将把一个32*3…
为了简单起见,这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式. ---1.收集数据:提供文本文件 该数据集合修改自“手写数字数据集的光学识别”-一文中的数据集合,该文登载于2010年10月3日的UCI机器学习资料库中http://archive.ics.uci.edu/ml.        ---2.准备数据:将图像转换为测试…
1.导包 import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighborsClassifier as KNN %config ZMQInteractiveShell.ast_node_interactivity='all' 2.定义将图像转换成向量的函数 """ 函数说明:将32x32的二进制图像转换成1x1024向量 Parameters: f…
这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距离来得到最接近的答案. import os import operator from numpy import * def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (…
目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python 解析文本文件 分析数据:使用 Matplotlib 画二维散点图 准备数据:归一化数值 测试算法:验证分类器 使用算法:构建完整可用系统 手写识别系统 准备数据 测试算法 使用算法:构建完整可用系统 总结 K-近邻算法 k-近邻分类算法概述 使用 k-近邻算法改进约会网站的配对效果 手写识别系统…
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征比较,算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前K个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类”. 优点:精度高.对异常…
1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计算已知类别数据集中的点与当前点的距离 (2)按照距离递增次序排序,选取与当前点距离最小的 k 个点 (3)确定前 k 个点所在类别的出现频率 (4)返回前 k 个点出现频率最高的类别作为当前点的预测分类 2 手写识别 2.1 概念 指在手写设备上书写时产生的轨迹信息转化为具体字码,本篇博客重点非搭建…