目录 概 主要内容 问题描述 Differential Evolution (DE) 实验 Su J, Vargas D V, Sakurai K, et al. One Pixel Attack for Fooling Deep Neural Networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828-841. @article{su2019one, title={One Pixel Attack f…
论文源址:https://arxiv.org/abs/1701.06659 开源代码:https://github.com/MTCloudVision/mxnet-dssd 摘要 DSSD主要是向目标检测结构中增加语义信息.本文首先结合ResNet-101与SSD,然后,在此基础上添加反卷积层用于增大目标检测中的语义信息,从而提高目标物体尤其是小物体检测的准确率.本文主要研究在前向过程中添加附加单元至可学习模型中,本文主要指在前馈过程中反卷积与训练的模型输出之间的连接. 介绍 本文结构 SSD+…
论文源址:https://arxiv.org/abs/1710.08864 tensorflow代码: https://github.com/Hyperparticle/one-pixel-attack-keras 摘要 在对网络的输入上做点小处理,就可以改变DNN的输出结果.本文分析了一种极限条件下的攻击情形,只改变一个输入中的一个像素使网络的输出发生改变.本文提出了一个基于差分进化生成单像素的对抗性扰动.可以以最小攻击信息的条件下,对更多类型的网络进行欺骗.结果表明,CIFAR-10测试集上…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作.基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask.Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销.此外,Mask R-CNN可以很容易扩展至其他任务中.如关键点检测.本文在COCO…
论文源址:https://pjreddie.com/media/files/papers/YOLOv3.pdf 代码:https://github.com/qqwweee/keras-yolo3 摘要 本文针对YOLO再次改进,训练更大的网络,准确率也有所提高.在320x320的输入上YOLOv3运行22ms,mAP为28.2,与SSD的准确率相同,但比SSD快三倍.在使用0.5 IOU作为检测机制时,YOLOv3仍表现很好.在Titan X上实现57.9 AP50 51ms的运行,而Retin…
论文源址:https://arxiv.org/abs/1704.05776 开源代码:https://github.com/xiaohaoChen/rrc_detection 摘要 大多数目标检测及定位算法基于R-CNN类型的两阶段处理方法,第一阶段生成可行区域框,第二步对决策进行增强.尽管简化了训练过程,但在benchmark获得较高mAP的结果下,单阶段的检测方法仍无法匹敌两阶段的方法. 本文提出了一个新的单阶段的目标检测网络用于克服上述缺点,称为循环滚动卷积结构,在多尺寸feature m…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① Positive Re-Weighting: 其中 若太大,则选择的样本标签的可信度小:若太小,则样本数量不足以进行矩阵学习,因此设置如下的: 其中,σ为 [0, 1],如果 σ = 1,则说明充分相信样本估计的可信度,反之设置为 σ = 0. ② Negative Re-Weighting: 对于所…
论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确率的检测器基于双阶段的目标检测算法实现,单阶段通过对可能存在的位置进行密集的采样操作,一定程度上要比双阶段的方法要更简单快速,但是准确率会有所损失.在进行训练时,前景与背景二者之间较大的类别不平衡是产生上述问题的原因.针对上述问题,本文对常规的损失函数进行修改,降低易分类样本产生的损失的贡献度.本文…