若$R=0$,那么显然答案为离原点最远的点到原点的距离. 否则若所有点都在原点,那么显然答案为$R$. 否则考虑二分答案$mid$,检查$mid$是否可行. 那么每个点根据对应圆交,可以覆盖圆上的一部分,每个可行方案都可以通过平移使得刚好卡住某个交点. 枚举每个交点,算出圆上$n$个位置的坐标,然后匈牙利算法判断是否存在完美匹配,时间复杂度$O(n^4\log w)$,不能承受. 注意到这个图是个稠密图,所以可以用bitset对匈牙利进行加速,做到$O(\frac{n^3}{32})$每次匹配.…
题面 传送门 题解 调了咱一个上午-- 首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示 首先,如果我们知道这个正\(n\)边形的转角,也就是它在水平的基础上转过了几度的话,那么可以把它的每个顶点和包含它的圆弧所代表的点连边,如果这个二分图存在完备匹配那么说明有解 然而我们并不知道这个多边形转过了几度 我们考虑一种可行的方案,如果它没有任何一个顶点和在一段圆弧的端点上,那么一定可以转一点点距离使其中一个顶点刚好落在一个圆弧的端点上,那…
[BZOJ5316][JSOI2018]绝地反击(网络流,计算几何,二分) 题面 BZOJ 洛谷 题解 很明显需要二分一个答案. 那么每个点可以确定的范围就是以当前点为圆心,二分出来的答案为半径画一个圆,和目标的圆的交就是可行的区间. 首先我们不知道正\(n\)边形的转角,如果我们知道的话,可以直接暴力网络流来进行\(check\). 首先一个答案可行,意味着某个点在目标圆上覆盖的弧的两端中,一定有一个是可行的. 所以我们需要验证的转角只有\(2n\)个.这样子暴力跑网络流的次数是\(2nlog…
题目描述 WJJ喜欢“魔兽争霸”这个游戏.在游戏中,巫妖是一种强大的英雄,它的技能Frozen Nova每次可以杀死一个小精灵.我们认为,巫妖和小精灵都可以看成是平面上的点. 当巫妖和小精灵之间的直线距离不超过R,且巫妖看到小精灵的视线没有被树木阻挡(也就是说,巫妖和小精灵的连线与任何树木都没有公共点)的话,巫妖就可以瞬间杀灭一个小精灵. 在森林里有N个巫妖,每个巫妖释放Frozen Nova之后,都需要等待一段时间,才能再次施放.不同的巫妖有不同的等待时间和施法范围,但相同的是,每次施放都可以…
[BZOJ3993]星际战争(网络流,二分答案) 题面 Description 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战.在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值减少到0或者以下时,这个巨型机器人就被摧毁了.X军团有M个激光武器,其中第i个激光武器每秒可以削减一个巨型机器人Bi的装甲值.激光武器的攻击是连续的.这种激光武器非常奇怪,一个激光武器只能攻击一些特定的敌人.Y军团看到自己的巨型机器…
[BZOJ5251][八省联考2018]劈配(网络流,二分答案) 题面 洛谷 BZOJ Description 一年一度的综艺节目<中国新代码>又开始了. Zayid从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了. 题目描述 轻车熟路的Zayid顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的: 总共n名参赛选手(编号从1至n)每人写出一份代码并介绍自己的梦想.接着由所有导师对这些选手进行排名. 为了避免后续的麻烦,规定不存在排名并列的情况. 同…
TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a problem - their child John never puts his toys away w…
洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地.某天下午,有一群牛在田地里吃草,他们分散在农场的诸多田地上,农场由m条无向的路连接,每条路有不同的长度. 突然,天降大雨,奶牛们非常混乱,想要快点去躲雨.已知每个田地都建立有一个牛棚,但是每个牛棚只能容纳一定数量的牛躲雨,如果超过这个数量,那…
洛谷题目传送门 说不定比官方sol里的某理论最优算法还优秀一点? 所以\(n,m\)说不定可以出到\(1000\)? 无所谓啦,反正是个得分题.Orz良心出题人,暴力有70分2333 思路分析 正解的思路很巧妙,其实我并不觉得这是个正儿八经的网络流或者二分图匹配的题目,主要还是个思维+建图模型+乱搞...... \(C=1\)时我们就可以对于每个人直接匹配而不会影响到后面的选择了.但是\(C>1\)的话,可能某一个人可以选多个导师,当他随便选了其中一个以后,可能影响到后面某个人使其选不到本来的最…
题解: 只要确定了每艘飞船的就位位置,就可以用二分+网络流求得答案: 定义偏转角度$a$为离$x$正半轴逆时针最近的边的弧度,$a \in [0,\frac{2\pi}{n})$ 二分一个值,对于一个点可以求出可到达的弧度记为$[l,r]$ 那么在$[0,a]$的移动范围内只有可能前面一个点删除,后面一个点加入: 对$O(n)$个关键点做网络流即可: 复杂度$O(n^4 \ logn)$ 如果将关键点排序,每次只考虑变化的边退流可以优化到:$O(n^3 \log n)$ #include<bit…