NumPy之:NumPy简介教程】的更多相关文章

numpy是什么?为什么使用numpy 使用numpy库与原生python用于数组计算性能对比…
目录 简介 安装NumPy Array和List 创建Array Array操作 sort concatenate 统计信息 reshape 增加维度 index和切片 从现有数据中创建Array 算数运算 其他有用操作 矩阵 生成随机数 unique 矩阵变换 反转数组 flatten 和 ravel save 和 load CSV 简介 NumPy是一个开源的Python库,主要用在数据分析和科学计算,基本上可以把NumPy看做是Python数据计算的基础,因为很多非常优秀的数据分析和机器学…
Numpy功能简介: 1.官网:www.numpy.org 2.特点:(1)高效的多维矩阵/数组; (2);复杂的广播功能 (3):有大量的内置数学统计函数 矩阵(多维数组): 一维数组:  ([ 值1,值2,值3]) 维维数组: ([[1,2,3],[4,5,6]]) 三维数组:  ([[[]]]) 多维数组的创建 array函数: 步骤: 1.导入模块: import numpy as np 2.创建一个2维数组2行三列 : a = np.array([[1,2,3],[4,5,6]]) 其…
http://blog.csdn.net/u014374284/article/details/45420645 一.NumPy简介 NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括: 一个强大的N维数组对象ndrray: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数 NumPy的优点: 对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多: NumPy中的…
Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅copy 深copy b = a.copy 向量化 向量化和广播两个原理是矩阵内部原理 向量化运算=矢量化运算(可避免循环,直接实现矩阵之间,对应元素进行操作) 广播机制 广播机制:维度不同的矩阵运算时低维数矩阵会自动补全 原则1.1维数组可以和任意维度矩阵进行运算 原则2:是低维度矩阵按照某个轴进行广播…
补充: np.ceil()向上取整 3.1向上取整是4 np.floor()向下取整 数组名.resize((m,n)) 重置行列 基础操作 np.random.randn()符合正态分布(钟行/高斯)的数据 矩阵的水平拼接 np.vstack((a,b)) 矩阵的垂直拼接 np.hstack((a,b)) 点阵积: np.dot(a,b)/ a@b 结果是:a的行中的每个元素*b的列的每个元素.结果在求和 特列应用:B[] 列入班级成绩计算实列 #点阵积实列 import numpy as n…
数据分析图片保存:vg 1.保存图片:plt.savefig(path) 2.图片格式:jpg,png,svg(建议使用,不失真) 3.数据存储格式: excle,csv csv介绍 csv就是用逗号隔开的纯文本信息!!会以表格的信息打开 矩阵生成的相关属性 impor numpy as np #导入模块 a = np.array([1,2,3,4,5]) #一维矩阵 a = np.array([[1,2,3],[4,5,6]]) #二维矩阵 np.eye(3) #单位矩阵 np.diag(np…
1.empty(shape[, dtype, order]) 依据给定形状和类型(shape[, dtype, order])返回一个新的空数组. 参数: shape : 整数或者整型元组 定义返回数组的形状: dtype : 数据类型,可选 定义返回数组的类型. order : {‘C’, ‘F’}, 可选 规定返回数组元素在内存的存储顺序:C(C语言)-row-major:F(Fortran)column-major. 1 2 3 4 5 6 7 >>> np.empty([2, 2…
原文:http://www.cnblogs.com/taceywong/p/4568806.html 原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html翻译:Tacey Wong 概要:该章节,我们将介绍贯穿scikit-learn使用中的“机器学习(Machine Learning)”这个词汇,并给出一些简单的学习示例. 一.机器学习:问题设定 通常,一个学习问题是通过分析一些数据样本来尝试预测未知数据的属性.如果每…
numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)[source] Estimate a covariance matrix, given data and weights. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samp…