在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机. 求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(wTxi+b)>=1 因为此函数为凸函数(拉格朗日乘子法的前提条件),可用拉格朗日乘子法转化为对偶问题,当满足KKT条件时,对偶问题=原始问题. 关于约束: 1. 目标函数极值点在约束范围内:此时不等式约束失效,问题即退化为无约束优化问题. 这个很好理解,函数只有一个极值点,如果在约束范围内,直接对函数求极值点即可. 2. 目…