SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原始问题变为对偶问题来求解 1. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解.而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了.而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问…
支持向量机SVM 原创性(非组合)的具有明显直观几何意义的分类算法,具有较高的准确率源于Vapnik和Chervonenkis关于统计学习的早期工作(1971年),第一篇有关论文由Boser.Guyon.Vapnik发表在1992年(参考文档见韩家炜书9.10节)思想直观,但细节异常复杂,内容涉及凸分析算法,核函数,神经网络等高深的领域,几乎可以写成单独的大部头与著.大部分非与业人士会觉得难以理解.某名人评论:SVM是让应用数学家真正得到应用的一种算法 思路 简单情况,线性可分,把问题转化为一个…
前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法. 预备术语 1. 分割超平面:就是决策边界 2. 间隔:样本点到分割超平面的距离 3. 支持向量:离分割超平面距离最近的样本点 算法原理 在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类. 而拟合的中心思路是求错误估计函数取得最小值,得到的拟合…
前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法. 预备术语 1. 分割超平面:就是决策边界 2. 间隔:样本点到分割超平面的距离 3. 支持向量:离分割超平面距离最近的样本点 算法原理 在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类. 而拟合的中心思路是求错误估计函数取得最小值,得到的拟合…
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Support Vector Machine.支持向量机,其含义是通过支持向量运算的分类器.其中"机"的意思是机器,可以理解为分类器. 那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量. 见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑…
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器.支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次规划的问题,其学习算法就为求解凸二次规划的最优化算法序列最小最优化算法(SMO). 关键词:二类分类:间…
虽然已经学习了神经网络和深度学习并在几个项目之中加以运用了,但在斯坦福公开课上听吴恩达老师说他(在当时)更喜欢使用SVM,而很少使用神经网络来解决问题,因此来学习一下SVM的种种. 先解释一些概念吧: 矩阵二范数: ||w|| = sqrt(w'w) 跟室友探讨了一下,觉得对于n维列向量来说,二范数的意义是它到零点的距离. 支持向量机——即最优间隔分类器: 最优间隔分类器的最终目标就是让边界与数据点之间的间隔(距离)最大,间隔的标度有两种: 1. 函数间隔 γ^(i) = y(i) * (w'x…
1.介绍 它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 2.求解过程 1.数据分类—SVM引入 假设在一个二维平面中有若干数据点(x,y),其被分为2组,假设这些数据线性可分,则需要找到一条直线将这两组数据分开.这个将两种数据分割开的直线被称作分隔超平面(separating hyperplane),当其在更加高维的空间中为超平面,在当前的二维平面为一条直线. 这样的直线可能存在很多条,则我们…
1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点,已知这些点可以分为两类,现在让你将它们分类. (图1) 显然我们可以发现所有的点一类位于左下角,一类位于右上角.所以我们可以很自然将它们分为两类,如图2所示:红色的点代表一类,蓝色的点代表一类. (图2) 现在如果让你用一条直线将这两类点分开,这应该是一件非常容易的事情,比如如图3所示的三条直线都…
本文适合于对SVM基本概念有一点了解的童鞋. SVM基本概念: 最大边缘平面--基本原理:结构风险最小化 分类器的泛化误差 支持向量 问题描述: 请对一下数据,利用svm对其进行分类.       最终任务:            找到最优超平面   图1 看到这张图之后,发现这是一个线性可分的二分类问题. 数据是这样的:        y=1 类别1   y=-1 类别2   x1 x2   x1 x2 x1 0 0 x4 3 3 x2 1 0 x5 3 0 x3 0 1 x6 0 3   好…
开发库: libsvm, liblinear      GitHub地址 SVM难点:核函数选择 一.基本问题 找到约束参数ω和b,支持向量到(分隔)超平面的距离最大:此时的分隔超平面称为“最优超平面” 距离表示为, 问题表示为, #支持向量机名字的由来:由支持向量得到的分类器  二.问题的求解 上述问题为一个凸二次优化问题,可以由现成的优化计算包求解 高效方法:用拉格朗日乘子法求解其对偶问题,得到问题的解—— SMO算法:在参数初始化后, SMO算法之所以高效,由于在固定其他参数后,仅优化两个…
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很大的原因是,不知道写什么好-_-,最近一段时间看了看关于 SVM(Support Vector Machine)的文章,觉得SVM是一个非常有趣,而且自成一派的方向,所以今天准备写一篇关于关于SVM…
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classification)的模式识别应用中. 支持向量机的最大特点是既能够最小化经验损失(也叫做经验风险.或者经验误差),同时又能够最大化几何间距(分类器的置信度),因此SVM又被称为最大边缘区(间距)的分类器. 根据具体应用场景的不同,支持向量机可以分为线性可分SVM.线性SVM和带有核函数的SVM.最终的结果都是得…
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很大的原因是,不知道写什么好-_-,最近一段时间看了看关于SVM(Support Vector Machine)的文章,觉得SVM是一个非常有趣,而且自成一…
一 .支持向量机(SVM) 1.1 符号定义 标签 y 不再取 0 或 1,而是: y∈{-1, 1} 定义函数: 向量,没有第 0 个维度,b 为截距,预测函数定义为: 1.2 函数间隔与几何间隔 1.2.1 函数间隔 样本个体: 全体: 1.2.2 几何间隔 样本个体: 全体:   1.2.3 关系 函数间隔与几何间隔都是对预测置信度的度量,这个间隔越大,说明预测样本离着分界线越远,我们预测的结果也就更加可靠. 1.3 优化目标 假设样本是线性可分的,优化目标为 1.4 广义拉格朗日乘数法…
支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: def __init__(self, dataSet, labels, C, toler, kernel_option): self.train_x = dataSet # 训练特征 self.train_y = labels # 训练标签 self.C = C # 惩罚参数 self.toler…
SVM 是一块很大的内容,网上有写得非常精彩的博客.这篇博客目的不是详细阐述每一个理论和细节,而在于在不丢失重要推导步骤的条件下从宏观上把握 SVM 的思路. 1. 问题由来 SVM (支持向量机) 的主要思想是找到几何间隔最大的超平面对数据进行正确划分,与一般的线性分类器相比,这样的超平面理论上对未知的新实例具有更好的分类能力.公式表示如下:  : 所有点中最小的几何间隔, 实际上就是支持向量上的点的几何间隔  : 训练样本及对应标签, , 作用是将第 i 个样本点的几何间隔转化为正数 公式的…
软间隔最大化(线性不可分类svm) 上一篇求解出来的间隔被称为 "硬间隔(hard margin)",其可以将所有样本点划分正确且都在间隔边界之外,即所有样本点都满足 \(y_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b) \geqslant 1\) . 但硬间隔有两个缺点:1. 不适用于线性不可分数据集. 2. 对离群点(outlier)敏感. 比如下图就无法找到一个超平面将蓝点和紫点完全分开: 下图显示加入了一个离群点后,超平面发生了…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp…
第二部分:转化为对偶问题进一步简化 这一部分涉及的数学原理特别多.如果有逻辑错误希望可以指出来. 上一部分得到了最大间隔分类器的基本形式:   其中i=1,2,3...m 直接求的话一看就很复杂,我们还需要进一步简化. 这里就需要介绍拉格朗日乘子法.介绍它还是从最最简单的形式说起: 一.关于优化问题的最基本的介绍 优化问题这里面有很多东西,我先给出参考过的资料有,可以先看看这些资料自己总结一下,因为我觉得这部分内容很多人总结的都很好了: ①<支持向量机导论>的第五章最优化理论 ②刚买的<…
在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机. 求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(wTxi+b)>=1 因为此函数为凸函数(拉格朗日乘子法的前提条件),可用拉格朗日乘子法转化为对偶问题,当满足KKT条件时,对偶问题=原始问题. 关于约束: 1. 目标函数极值点在约束范围内:此时不等式约束失效,问题即退化为无约束优化问题. 这个很好理解,函数只有一个极值点,如果在约束范围内,直接对函数求极值点即可. 2. 目…
目录 凸集的基本概念 凸函数的基本概念 凸优化的一般提法 凸集基本概念 思考两个不能式 两个正数的算术平均数大于等于几何平均数 给定可逆对称阵Q,对于任意向量x,y,有: 思考凸集和凸函数 在机器学习中,我们把形如 这样的图形的都称为凸函数. \(y=x^2\)是凸函数,函数图像上位于\(y=x^2\)的区域构成凸集. 凸函数图像的上方区域,一定是凸集: 一个函数图像的上方区域为凸集,则该函数是凸函数. 直线的向量表达 已知二维平面上的两定点A(5,1),B(2,3)尝试给出经过带你AB的直线方…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
上一篇说到SVM需要求出一个最小的||w|| 以得到最大的几何间隔. 求一个最小的||w|| 我们通常使用 来代替||w||,我们去求解 ||w||2 的最小值.然后在这里我们还忽略了一个条件,那就是约束条件,在上一篇的公式(8)中的不等式就是n维空间中数据点的约束条件.只有在满足这个条件下,求解||w||2的最小值才是有意义的.思考一下,若没有约束条件,那么||w||2的最小值就是0,反应在图中就是H1和H2的距离无限大那么所有点都会在二者之间,都属于同一类,而无法分开了. 求最小值的目标函数…
转自:https://zhidao.baidu.com/question/494249074914968332.html SVM使用拉格朗日乘子法更为高效地求解了优化问题. SVM将寻找具有最大几何间隔划分超平面的任务转化成一个凸优化问题,如下所示: 我们当然可以直接使用现成工具求解,但还有更为高效的方法,那就是使用拉格朗日乘子法将原问题转化为对偶问题求解. 具体做法是: (1)将约束融入目标函数中,得到拉格朗日函数: (2)然后对模型参数w和b求偏导,并令之为零: (3)得到w后,将其带入拉格…
优化与深度学习 优化与估计 尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同. 优化方法目标:训练集损失函数值 深度学习目标:测试集损失函数值(泛化性) %matplotlib inline import sys import d2lzh1981 as d2l from mpl_toolkits import mplot3d # 三维画图 import numpy as np def f(x): return x * np.cos(np.pi *…