MapReduce的shuffle过程详解】的更多相关文章

1.Map任务处理 1.1 读取HDFS中的文件.每一行解析成一个<k,v>.每一个键值对调用一次map函数.                <0,hello you>   <10,hello me> 1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出. <hello,1> <you,1> <hello,1> <me,1> 1.3 对1.2输出的<k,v&g…
1.map task读取数据时默认调用TextInputFormat的成员RecoreReader,RecoreReader调用自己的read()方法,进行逐行读取,返回一个key.value; 2.返回的key.value交给自定义的map方法,输出的context.write(key,value),再交给内部的OutputCollecter会不断写入一个环形缓冲区 (就是一个数组,内存空间默认100M): 3.随着不断的写入,一般只占默认内存的80%,剩下的空间需要在溢出之前进行分区以及根据…
[学习笔记] 结果分析:shuffle的英文是洗牌,混洗的意思,洗牌就是越乱越好的意思.当在集群的情况下是这样的,假如有三个map节点和三个reduce节点,一号reduce节点的数据会来自于三个map节点,而不是就来自于一号map节点.所以说它们的数据会混合,路线会交叉, 3叉3.想象一下,像不像洗牌? 马克-to-win @ 马克java社区:shuffle在MapReduce中是指map输出后到reduce接收前,按下面的官方shuffle图:具体可以分为map端和reduce端两个部分.…
原文地址:http://langyu.iteye.com/blog/992916 另一篇博文:http://www.cnblogs.com/gwgyk/p/3997849.html Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的. Shuffle是洗牌的意思,Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里Shuff…
一.Maptask并行度与决定机制 1.一个job任务的map阶段的并行度默认是由该任务的大小决定的: 2.一个split切分分配一个maprask来并行处理: 3.默认情况下,split切分的大小等于blocksize大小: 4.切片不是mapper类中对单词的切片,而是对每一个处理文件的单独切片. eg.  默认情况下,一个maptask处理的文件大小为128M,比如一个400M的数据文件,就需要4个maptask并行来处理,而500M的数据文件也是需要4个maptask. 二.Maptas…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapreduce的简介和优点 mapreduce是一个分布式运算程序的编程框架,是hadoop数据分析的核心. mapreduce的核心思想是将用户编写的逻辑代码和架构中的各个组件整合成一个分布式运算程序,实现一定程序的并行处理海量数据,提高效率. 海量数据难以在单机上处理,而一旦将单机版程序扩展到集群上进行分…
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详解 每个Mapper任…
一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: 整个流程图具体来说:每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示. 在上图中,把Mapper任务的运行过程分为六个阶段. 第一阶段是把输…