np.max() 和 np.maximum()的区别】的更多相关文章

1.np.max(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接受一个参数 axis默认为axis=0即列向,如果axis=1即横向 ex: >> np.max([-2, -1, 0, 1, 2]) 2 2.np.maximum(X, Y, out=None) X和Y逐位进行比较,选择最大值. 最少接受两个参数 ex: >> np.maximum([-3, -2, 0, 1, 2], 0) array([0, 0, 0, 1, …
np.max(a, axis=None, out=None, keepdims=False) # 接收一个参数a # 取a 在 axis方向上的最大值 np.maximum(x, y) # 接收两个参数x,y # x,y逐位比较取最大值…
1. 参数 首先比较二者的参数部分: np.max:(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接收一个参数 axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值: np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 2. 使用上 >> np.max([-2, -1, 0, 1, 2]) 2 >> np.maximum([-2, -1, 0, 1,…
转自:https://blog.csdn.net/lanchunhui/article/details/52700895…
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgrid 与np.ogrid的目的都是为创建一个格栅区域,而mgrid返回的是相同维度的数组,ogrid仅返回本维度的数组,而创建格栅区域可以i这样理解:如果要确定一点(x,y),则对于mgrid返回值而言,首先取出所有数组的第x行,然后再第x行取出第y个数字,因此,mgrid的第一个数组x,每行都是相…
array 和 asarray 都可以将 结构数据 转化为 ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 import numpy as np a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) """ 运行结果: [[1, 2, 3], […
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文,因此他从一名学生直接成为学院的研究员,并开始了"可计算性"研究.1936年4月,图灵发表了"可计算数及其在判定问题上的一个应用"的论文,形成了"图灵机"的重要思想.用反证法证明,任何可计算其值的函数都存在相应的图灵机:反之,不存在相应图灵机的函数就是…
output   array([[ 0.24747071, -0.43886742],   [-0.03916734, -0.70580089],   [ 0.00462337, -0.51431584],   ...,   [ 0.15071507, -0.57029653],   [ 0.06246116, -0.33766761],   [ 0.08218585, -0.59906501]], dtype=float32)       ipdb> np.shape(output)   (6…
1. np.asarray -- numpy 风格的类型转换 从已有多维数组创建新的多维数组,数据类型可重新设置 >> B = np.asarray(A, dtype='int32') 2. np.array() vs np.asarray 源码之前,了无秘密. 两者的区别和联系,铜通过查看源码,一目了然: def asarray(a, dtype=None, order=None): return array(a, dtype, copy=False, order=order) 两者主要的区…
np.r_是按行连接两个矩阵,就是把两矩阵上下相加,要求列数相等,最终结果的行数为两个矩阵行数和. np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求行数相等,最终结果的列数等于两矩阵的列数和. np中的矩阵合并np.c_[matrix]只能按照列拼接(横向扩展原来句子的维度) np中的矩阵合并np.r_[matrix]只能按照行拼接(纵向扩展原来样本的数量) np中的矩阵合并np.concatenate([],1为列拼接/0为行拼接) 1)np.concatenate和np.append…