在对日志等大表数据进行处理的时候需要人为地设置任务的map数,防止因map数过小导致集群资源被耗光.可根据大表的数据量大小设置每个split的大小. 例如设置每个split为500M: set mapreduce.input.fileinputformat.split.maxsize=500000000;  //控制map任务输入划分的最大字节数 set mapreduce.input.fileinputformat.split.minsize=500000000;  //控制map任务输入划分…
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduceTasks(int)控制reduce任务数量而言,控制map任务数量一直是一个困扰我的问题.好在经过很多摸索与实验,终于梳理出来,希望对在工作中进行Hadoop进行性能调优的新人们有个借鉴.本文只针对FileInputFormat的任务划分进行分析,其它类型的InputFormat的划分方式又各有不同.虽然如…
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数 long maxSize = getMaxSplitSize(job); //getMaxSplitSize为用户设置的最大分片数,默认最大为long 922337…
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs.block.size)为128m时,如果输入文件为128m,会被划分为1个split:当块为256m,会被划分为2个split. 2) 文件的个数.FileInputFormat按照文件分割split,并且只会分割大文件,即那些大小超过HDFS块的大小的文件.如果HDFS中dfs.block.siz…
原文链接:https://blog.csdn.net/lylcore/article/details/9136555     hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素. 为了方便介绍,先来看几个名词:block_size : hdfs的文件块大小,1.x默认为64M,2.x为128M,可以通过参数dfs.block.size设置total_size : 输入文件整体的大小input_f…
1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3.如果输入中有很多小文件,依然想减少map个数,则需要将小文件merger为大文件,然后使用准则2.     2.原理与分析过程 看了很多博客,感觉没有一个说的很清楚,所以我来整理一下. 先看一下这个图 输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入…
首先,来说的是,reduce并发任务数,默认是1. 即,在jps后,出现一个yarnchild.之后又消失. 这里,我控制reduce并发任务数6 有多少个reduce的并发任务数可以控制,但有多少个map的并发任务数还没 其实啊,有多少个map的并发任务数还没(是在分片中控制的). jps ->   生成个Runjar  -> jps -> 生成个Runjar  ->  生成个MRAppMaster(运行map任务) soga jps  ->  生成个Runjar  -&g…
此文紧接Job流程:提交MR-Job过程.上一篇分析可以看出,MR-Job提交过程的核心代码在于 JobSubmitter 类的 submitJobInternal()方法.本文就由此方法的这一句代码开始分析: //计算并确定 map 的个数,以及各个输入切片 Splits 的相关信息 int maps = writeSplits(job, submitJobDir); 1.查看writeSplits()方法的实现过程: private int writeSplits(org.apache.ha…
一 介绍 之所以存在Reduce Join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中.Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输. Map Join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中.这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录…