SVD分解求解旋转矩阵】的更多相关文章

1.设是两组Rd空间的点集,可根据这两个点集计算它们之间的旋转平移信息. 2.设R为不变量,对T求导得: 令 则 将(4)带入(1)得: 令 则 (相当于对原来点集做减中心点预处理,再求旋转量) 3. 计算旋转量 因为R为正交阵且,均为标量, 所以 所以 而 令,对S进行SVD分解,则 令,则M为正交阵, 要求得最大迹,则使mii=1,则M必为单位阵,即…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵A的奇异值分解(SVD)可表示为 \(A = UΣV^T = U\begin{bmatrix} \sum &0\\ 0&0 \end{bmatrix}V = σ_1u_1v^T_1+σ_2u_2v^T_2+σ_ru_rv^T_r \qquad s.t.:U 和V都为正交矩阵\) 几何含义 A矩…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出python,这里先给出一个简单的矩阵.表示用户和物品之间的关系 这里我自己有个疑惑? 对这样一个DATA = U(Z)Vt 这里的U和V真正的几何含义  :  书上的含义是U将物品映射到了新的特征空间, V的转置  将 用户映射到了新的特征空间 以下是代码实现.同一时候SVD还能够用于降维,降维的操…
首先,有y = AX,将A看作是对X的线性变换 但是,如果有AX = λX,也就是,A对X的线性变换,就是令X的长度为原来的λ倍数. *说起线性变换,A肯定要是方阵,而且各列线性无关.(回想一下,A各列相当于各个坐标轴,X各个分量相当于各个坐标轴的“基本向量”长度) (同一长度的各个方向的向量,变换前和变换后,有些前后只是拉伸了,方向不变:有些拉伸了,方向同时也改变了) 这样的X1,X2……Xn称为特征向量, λ1, λ2…… λn为对应的特征值. 如果有S矩阵,全是特征特征向量,也就是 S =…
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很直观,而且极其有用.SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块.它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程. 首先来看一个对角矩阵, 几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射: 下图显示了这个映射的效果: 平面被横向…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…