Java 自定义实现 LRU 缓存算法】的更多相关文章

背景 LinkedHashMap继承自HashMap,内部提供了一个removeEldestEntry方法,该方法正是实现LRU策略的关键所在,且HashMap内部专门为LinkedHashMap提供了3个专用回调方法,afterNodeAccess.afterNodeInsertion.afterNodeRemoval,这3个方法的字面意思非常容易理解,就是节点访问后.节点插入后.节点删除后分别执行的行为.基于以上行为LinkedHashMap就可以实现一个LRUCache的功能了. 关于Li…
好吧,有人可能觉得我标题党了,但我想告诉你们的是,前阵子面试确实挂在了 RLU 缓存算法的设计上了.当时做题的时候,自己想的太多了,感觉设计一个 LRU(Least recently used) 缓存算法,不会这么简单啊,于是理解错了题意(我也是服了,还能理解成这样,,,,),自己一波操作写了好多代码,后来卡住了,再去仔细看题,发现自己应该是理解错了,就是这么简单,设计一个 LRU 缓存算法. 不过这时时间就很紧了,按道理如果你真的对这个算法很熟,十分钟就能写出来了,但是,自己虽然理解 LRU…
阿里巴巴笔试考到了LRU,一激动忘了怎么回事了..准备不充分啊.. 缓存这个东西就是为了提高运行速度的,由于缓存是在寸土寸金的内存里面,不是在硬盘里面,所以容量是很有限的.LRU这个算法就是把最近一次使用时间离现在时间最远的数据删除掉.先说说List:每次访问一个元素后把这个元素放在 List一端,这样一来最远使用的元素自然就被放到List的另一端.缓存满了t的时候就把那最远使用的元素remove掉.但更实用的是HashMap.因为List太慢,要删掉的数据总是位于List底层数组的第一个位置,…
import java.util.Hashtable; class DLinkedList { String key; //键 int value; //值 DLinkedList pre; //双向链表前驱 DLinkedList next; //双向链表后继 } public class LRUCache { private Hashtable<String,DLinkedList> cache = new Hashtable<String,DLinkedList>(); pr…
这篇写的略为纠结,算法原理.库都是现成的,我就调用了几个函数而已,这有啥好写的?不过想了想,还是可以介绍一下LRU算法的原理及简单的用法.   LRU(Least Recently Used,最近最少使用)是一种内存页面置换算法.什么叫内存页面置换?我们知道,相对于内存的速度来讲,磁盘的速度是很慢的.我们需要查询数据的时候,不能每次都跑到磁盘去查,需要在内存里设置一块空间,把一些常用的数据放在这块空间里,以后查的时候就直接在这里查,而不必去磁盘,从而起到“加速”的作用.但是这块空间肯定是远远小于…
LinkedHashMap的get()方法除了返回元素之外还可以把被访问的元素放到链表的底端,这样一来每次顶端的元素就是remove的元素. 构造函数如下: public LinkedHashMap (int initialCapacity, float loadFactor, boolean accessOrder): initialCapacity   初始容量 loadFactor    加载因子,一般是 0.75f accessOrder   false基于插入顺序,true 基于访问顺…
LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法. 实现思路: hashtable + 双向链表 时间复杂度: 插入,查找,删除:O(1) 空间使用情况: O(N) :一个链表存储K个数据(stl的hash_map实际占的空间比较大). 运行环境: linux:redhat , fedora ,centos等(理论上ubuntu , debian,mac os等也可以运行) 代码: [cpp] view plaincopy #ifndef __…
http://blog.csdn.net/beiyeqingteng/article/details/7010411 http://blog.csdn.net/wzy_1988/article/details/33444991 http://ju.outofmemory.cn/entry/262074…
LRU Cache的LinkedHashMap实现 LRU Cache的链表+HashMap实现 LinkedHashMap的FIFO实现 调用示例 LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,LRU缓存就是使用这种原理实现,简单的说就是缓存一定量的数据,当超过设定的阈值时就把一些过期的数据删除掉,比如我们缓存10000条数据,当数据小于10000时可以随意添加,当超过10000时就需要把新的数据添加进来,同时要把过期数据删除,以确保我们最大缓存1000…
LRU Cache的LinkedHashMap实现 LRU Cache的链表+HashMap实现 LinkedHashMap的FIFO实现 调用示例 LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,LRU缓存就是使用这种原理实现,简单的说就是缓存一定量的数据,当超过设定的阈值时就把一些过期的数据删除掉,比如我们缓存10000条数据,当数据小于10000时可以随意添加,当超过10000时就需要把新的数据添加进来,同时要把过期数据删除,以确保我们最大缓存1000…