题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和. 思路:首先可以推导出一个公式C(n,i)+C(n + 1,i)+...+C(m,i) = C(m + 1,i + 1) 知道了这个公式,就可以将子矩阵里每行(或每列)的和值表示成组合数的差值,现在的关键是求出C(n,m)(mod p). 由于…
Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analyse: 直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法. 方法一:Lucas定理+快速幂水过 方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和.画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m…
Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day…
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern…
输入p n 求杨辉三角的第n+1行不能被p整除的数有多少个 Lucas定理: A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0].     则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p同余 即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p),在存在i.b[i]>a[i]时,mod值为0,所以必然整除.当对于全…
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lucas定理,2的幂,就是二进制啊 ${1\choose 1}={1\choose 0}={0\choose 0}=1 \quad {0\choose 1}=0$ 只要二进制有1位n是0而i是1,${n\choose i}$就不是奇数啦 对于n二进制的每一个1,i都有两种选择,答案就是$2^{bitC…
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240…
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p + a0 m = bk*p^k + b(k-1)*p^(k-1) + ... + b1*p + b0 然后C(n,m)%p = C(ak , bk) * C(a(k-1) , b(k-1)) * ... * C(a1 , b1) * C(a0 , b0) % p 当然这其中出现 ai < bi的情况…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T…