(Problem 17)Number letter counts】的更多相关文章

If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be…
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 2520  7   8   9  1019  6   1   2  1118  5   4   3  1217 16 15 14 13 It can be verified that the sum of the numbers on the di…
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... By converting each letter in a word to a number corresponding to its alphabetical position and…
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there…
It is possible to show that the square root of two can be expressed as an infinite continued fraction.  2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213... By expanding this for the first four iterations, we get: 1 + 1/2 = 3/2 = 1.51 + 1/(2 + 1/2) = 7…
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000? 题目大意: 题目大意: 215 = 32768 并且其各位之和为 is 3 + 2 + 7 + 6 + 8 = 26. 21000 的各位数之和是多少? // (Problem 16)Power digit sum // Completed on Sun, 17 No…
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. 371072875339021027987979982208375902465101357402504637693767749000971264812489697007805041701826053874324986199524741059474233309513058123726617309629919422133635…
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? 题目大意: 如果一个数字将1到n的每个数字都使用且只…
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relative…
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it tu…