1. 摘要 ReLU 相比 Tanh 能产生相同或者更好的性能,而且能产生真零的稀疏表示,非常适合自然就稀疏的数据. 采用 ReLU 后,在大量的有标签数据下,有没有无监督预训练模型取得的最好效果是一样的,这可以被看做是训练深层有监督网络的一个新的里程碑. 2. 背景 2.1. 神经元科学的观察 对脑能量消耗的研究表明,神经元以稀疏和分布的方式编码信息,同时活跃的神经元的百分比估计在 1% 到 4% 之间.这是信息表示丰富度和潜在能量消耗的一种平衡.但是,如果没有额外的正则化,比如 \(L_1\…
第三周:浅层神经网络(Shallow neural networks) 神经网络概述(Neural Network Overview) 本周你将学习如何实现一个神经网络.在我们深入学习具体技术之前,我希望快速的带你预览一下本周你将会学到的东西.如果在本节课中的某些细节你没有看懂你也不用担心,我们将在后面的几节课中深入讨论技术细节. 现在我们开始快速浏览一下如何实现神经网络.首先你需要输入特征 \(x​\),参数 \(w​\) 和 \(b​\),通过这些你就可以计算出 \(z​\),接下来使用 \…
Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: 求导公式…
NN representation 这一课主要是讲3层神经网络 下面是常见的 activation 函数.sigmoid, tanh, ReLU, leaky ReLU. Sigmoid 只用在输出0/1 时候的output layer, 其他情况基本不用,因为tanh 总是比sigmoid 好. 两种 ReLU 使用起来总是要比sigmoid 和 tanh 快.ReLU 是最常用的 activation. 为什么Activation function 要是non-linear的?因为如下图所示…
整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning…
URL: https://arxiv.org/abs/1608.08021 year: 2016 TL;DR PVANet 一个轻量级多物体目标检测架构, 遵循 "less channels with more layers" 的设计原则, 通过结合 CReLU, Inception, HyperNet 3 个模块构成了一个高效的目标检测架构, 在达到了当时 SOTA. CReLU 应用于PVANet 早期阶段, 以将计算次数减少一半而不会失去准确性. Inception 应用于特征生…
1.Introduction DL解决VO问题:End-to-End VO with RCNN 2.Network structure a.CNN based Feature Extraction 论文使用KITTI数据集. CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层. b.RNN based Sequential Modelling RNN is different from CNN in that it maintains memory of it…
Logistic regression Cost function for logistic regression Gradient Descent 接下来主要讲 Vectorization Logistic Regression 的向量实现 Vectorizing LR Gradient output Python/Numpy and Jupyter Notebook 上图中 axis=0 表示竖直方向,axis=1 是水平方向…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 灵长类视觉系统激发了深度人工神经网络的发展,使计算机视觉领域发生了革命性的变化.然而,这些网络的能量效率比它们的生物学对应体要低得多,而且它们通常使用反向传播进行训练,这是非常需要数据的.为了解决这些限制,我们使用了深度卷积脉冲神经网络(DCSNN)和延迟编码方案.我们将最低层的脉冲时序依赖可塑性(STDP)和最高层的奖励调节STDP(R-STDP)结合起来训练.简而言之,在R-STDP中,正确(错误)决策导致STD…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…