LG P3768 简单的数学题】的更多相关文章

P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j)) \bmod p\),其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数. 刚才题面打错了,已修改 输入输出格式 输入格式: 一行两个整数\(p\).\(n\). 输出格式: 一行一个整数\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))\b…
非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]\] 很套路的把后面的\(d\)提出来: \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]=\sum_{d=1}^nd^3\sum_{i=1}^{…
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. 输入输出格式 输入格式: 一行两个整数p.n. 输出格式: 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\). 输入输出样例 输入样例#1: 998244353 2000 输出样例#1: 883968974…
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. \(\color{#0066ff}{输入格式}\) 一行两个整数p.n. \(\color{#0066ff}{输出格式}\) 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~…
[题目链接] https://www.luogu.org/problemnew/show/P3768 [题目描述] 求 \(\sum_{i=1}^{n}\sum_{j=1}^{n}i* j* gcd(i,j)\mod\ p\) [欧拉反演题解] https://www.luogu.org/blog/zhoutb2333/solution-p3768 /* ----------------------- 最大测试点,时限6s [Input] 1000000007 9786510294 [Outpu…
题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i,j)$ 枚举gcd(i,j)=w,得到 $\sum\limits_{w=1}^{n}w\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[w=gcd(i,j)]$ 这时候我们设一个…
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i,j)\) 首先加入方括号并枚举g,提gcd的g: \(\sum\limits_{g=1}^{n}g\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[gcd(i,j)==g]\) 后面的方括号里的g也可以提出来,注意前面有两个id,所以: \(\sum\lim…
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\frac{({\lfloor}\frac{n}{d}{\rfloor}+1)^2{{\lfloor}\frac{n}{d}{\rfloor}}^2}{4}$ 可以对calc(d)做整除分块,那么要求$d^2\varphi(d)$的前缀和 看一眼数据范围,大概要杜教筛 凑了一会,发现令$f(d)=d^…
解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换元枚举那个乘积.提到最前面. 稍微化一下,发现后面有个Id * miu,这个东西化成phi. 然后得到一个式子,前半部分是s2(n/i)这个整除分块,后面就要相应的求这个东西i2phi[i]的前缀和来迎合整除分块. 然后就是杜教筛,先设个g,把h(n)写出来发现要消掉一个d2,于是g(x) = x2…
Description: 求出\((\sum_{i=1}^n \sum_{j=1}^n ij\ gcd\ (i,j)) mod\ p\) Hint: \(n<=10^{10}​\) Solution: \(Ans=\sum_{d=1}^nd^3 \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} ij\ \ [gcd(i,j)==1]​\) \(Ans=\sum_{d=1}^nd^3\…