原创作者 | 苏菲 论文题目: Prompt-free and Efficient Language Model Fine-Tuning 论文作者: Rabeeh Karimi Mahabadi 论文地址: https://openreview.net/pdf?id=6o5ZEtqP2g 提示学习(Prompt-learning)被誉为自然语言处理的"第 4 种范式",它可以在少样本甚至零样本的条件下,通过将下游任务修改为语言生成任务来获得相对较好的模型. 但是,传统的提示学习需要针对…
原创作者 | 苏菲 论文题目: Prompt-free and Efficient Language Model Fine-Tuning 论文作者: Rabeeh Karimi Mahabadi 论文地址: https://openreview.net/pdf?id=6o5ZEtqP2g 02 PERFECT:无需Patterns和Verbalizer的微调模型 这个模型主要包含三个部分: 1)无需pattern的任务描述,使用了一个任务相关的适配器来有效告知模型相关的任务,取代了手工制作的pa…
NLP论文解读 原创•作者 | 小欣   论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction 论文链接:https://arxiv.org/pdf/2106.09895.pdf 代码:https://github.com/hy-struggle/PRGC 1.前言 1. 论文的相关背景 关系抽取是信息抽取和知识图谱构建的关键任务之一,它的目标是从非结构化的…
从单一图像中提取文档图像:ICCV2019论文解读 DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Das_DewarpNet_Single-Image_Document_Unwarping_With_Stacked_3D_and_2D_Regressio…
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户项目交互矩阵 \(A\) 计算相似度矩阵 \(W\): 这样,用户对整个项目列表的偏好值可以如下计算: \[{ {\tilde a_i}^T}={ a_i^T} \times W\] 例如,对于 j 号物品,用户的偏好值如此计算: \[{ {\tilde a_{(u,j)}}}=\sum_{i\in…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 188 人赞同了该文章 前言 anchor-free目标检测属于anchor-free系列的目标检测,相比于CornerNet做出了改进,使得检测速度和精度相比于one-stage和two-stage的框架都有不小的提高,尤其是与YOLOv3作比较,在相同速度的条件下,CenterNet的精度比Y…
文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称:"Non-local Neural Networks" 论文地址:https://arxiv.org/abs/1711.07971 0 概述 首先,这个论文中的模块,叫做non-local block,然后这个思想是基于NLP中的self-attention自注意力机制的.所以在提到CV中…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…