「HNOI 2013」游走】的更多相关文章

题目链接 戳我 \(Solution\) 首先申明几个变量: f[x]:到点x的概率, vis[x]:x点的度 dp[x][y]:(x,y)这条边的概率 number[x][y]:x这条边的编号 下面的式子保证存在一条(x,y)的边 我们可以知道总分的期望为: \[\sum dp[x][y]*number[x][y]\] 即:所有边的期望成这条边的编号的和 那么\(dp\)数组怎么算呢? \[ dp[x][y]=\frac{f[x]}{vis[x]}+\frac{f[y]}{vis[y]}\]…
题意与分析 定义走到每条边的期望为\(e_i\),一开始的想法是给定一个\(\large\sum_{i=1}^n e_i a_i\),求一个a的排列使得这个和最小.问题在于这样等于没对题目作分析,而且题目的难度没有被转化降低.于是(在高人指点下)我们想到,如果先求出\(e_i\),然后按照从小到大的顺序贪心的编号,问题就直接转化成求走到每个边的期望. 边的期望是一个新操作,但是其实不难:定义走到点的期望是\(f_i\),考虑一条边\((u, v)\),对于这条边而言,只有从u和从v才能走到这条边…
题目链接 戳我 \(Solution\) 这道题观察数据范围发现很小,再看看题目可以发现是搜索. 这题纯搜索会\(T\)所以要加入适当剪枝 如果一个人后面的比赛都赢却依旧到不了目标分数,则直接\(return\) 限制每个人的分数,使他的分数不超过目标分数 我们用\(fx\)当做分出胜负的场次,\(fy\)当做平的场,ans当做总分数.则可以列出如下方程: \[ \left\{ \begin{array} fx+fy=n*(n-1)/2\\ 3*fx+2*fy=ans \ \end{array}…
题目链接 戳我 \(Solution\) 我们首先想一想如果这一题只是二维的该怎么办? 就是一个最小点覆盖问题.这里就不详细解释了,用网络流或匈牙利都无所谓. 但现在是三维的,那么现在该如何处理呢? 我们发现\(a*b*c<=5000\),所以必定有一个要小于\(\sqrt[3]{5000}\) 所以我们可以枚举最小的一维的状态,那一维已经消了,还是没消. 对于没消的直接如同二维的跑最小点覆盖就好了. 但是\(bzoj\)实在卡不过去 \(Code\) #include<bits/stdc++…
题目链接 戳我 \(Solution\) 这道题貌似并不难的样子\(QAQ\) 我们发现这个因为有首项的关系所以有点不太好弄.所以我们要将这个首项对答案的影响给去掉. 我们可以构建一个差分数组,我们令他等于\(a[1],a[2]...a[k-1]\) 则一个差分数组对答案的贡献为: \[\sum_{i=1}^{k-1}n-a[i]\] 然后我们一共有\(m^(k-1)\)个这样的查分数组,所以总贡献为: \[\sum_{j=1}^{m^{k-1}}\sum_{i=1}^{k-1}n-a[j][i…
「HNOI2013」游走 题目描述 一个无向连通图,顶点从 \(1\) 编号到 \(N\) ,边从 \(1\) 编号到 \(M\) .小 \(Z\) 在该图上进行随机游走,初始时小 \(Z\) 在 \(1\) 号顶点,每一步小 \(Z\) 以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小 \(Z\) 到达 \(N\) 号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这 \(M\) 条边进行编号,使得小 \(Z\) 获得的总分的期望值最小.…
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想到先枚举这个\(D\),然后极角序排一下,我们枚举\(A\),对\(B,E,F\)分别统计. 枚举\(A\)的过程中用一个指针维护\(E,F\)的范围,对答案贡献是一个\(\sum\binom{x}{2}\)的形式,容易维护. 然后现在要求\(B\)的方案数,可以发现符合条件的\(BC\)一定满足线段\(…
传送门 Luogu 解题思路 考虑树形 \(\text{DP}\) 设状态 \(dp[u][i][j]\) 表示从首都走到点 \(u\) ,经过 \(i\) 条公路,\(j\) 条铁路的最小不方便值. 对于叶子节点也就是村庄,直接初始化,对于非叶子节点也就是城市,就从两个儿子向上转移. 而现在的一个问题就是:我们的 \(dp\) 数组根本开不下. 我们不得不优化空间. 考虑到一个性质:每次的答案都是从儿子向上合并,合并过后的节点就没用了. 所以我们只需要在dfs的过程中给每个节点记一个 \(df…
\(\mathcal{Description}\)   Link.   给定 \(n\) 堆石子,数量为 \(\{a_n\}\),双人博弈,每轮操作选定 \(i<j\le k\),使 \(a_i \leftarrow a_i-1\),\(a_j \leftarrow a_j+1\),\(a_k \leftarrow a_k+1\),并保证操作后所有 \(a_i\ge0\).求保证先手胜的第一步操作方案数和字典序最小的第一步操作.   多测,\(n\le21\),\(0\le a_i\le10^4…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…