tensorflow expand_dims和squeeze】的更多相关文章

有时我们会碰到升维或降维的需求,比如现在有一个图像样本,形状是 [height, width, channels],我们需要把它输入到已经训练好的模型中做分类,而模型定义的输入变量是一个batch,即形状为 [batch_size, height, width, channels],这时就需要升维了.tensorflow提供了一个方便的升维函数:expand_dims,参数定义如下: tf.expand_dims(input, axis=None, name=None, dim=None) 参数…
tf.squeeze()函数的作用是从tensor中删除所有大小(szie)是1的维度. 给定丈量输入, 此操作返回的是相同类型的张量, 并删除所有尺寸为1的维度.如果不想删除所有尺寸为1的维度, 可以通过指定squeeze_dims来删除特定维度. 下面通过例子来理解: # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3]   # 可见, 把shape为1的维度都删除了. 或者删除特定的维度: #…
计算图中的操作 import numpy as np import tensorflow as tf sess = tf.Session() x_vals = np.array([1., 3., 5., 7., 9.]) x_data = tf.placeholder(dtype=tf.float32) m_const = tf.constant(3.) my_product = tf.multiply(x_data, m_const) for x_val in x_vals: print(se…
一.计算图中的操作 在这个例子中,我们将结合前面所学的知识,传入一个列表到计算图中的操作,并打印返回值: 声明张量和占位符.这里,创建一个numpy数组,传入计算图操作: import tensorflow as tf import numpy as np # Create graph sess = tf.Session() # Create data to feed in x_vals = np.array([1., 3., 5., 7., 9.]) x_data = tf.placehold…
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; with tf.variable_scope('V1') as scope: a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) scope.reuse_variables() a3…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape. 在第axis位置增加一个维度 Given a tensor input, this operation inserts a dimension of 1 at the dimensio…
from http://blog.csdn.net/qq_31780525/article/details/72280284 tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape.  在第axis位置增加一个维度 Given a tensor input, this operation insert…
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Tensorflow using CNNs and Conditional Random Fields Tensorflow and TF-Slim | Dec 18, 2016 A post showing how to perform Image Segmentation with a recentl…
笔者将和大家分享一个结合了TensorFlow和最近发布的slim库的小应用,来实现图像分类.图像标注以及图像分割的任务,围绕着slim展开,包括其理论知识和应用场景. 之前自己尝试过许多其它的库,比如Caffe.Matconvnet.Theano和Torch等.它们各有优劣,而我想要一个可靠灵活的.自带预训练模型的python库.最近,新推出了一款名叫slim的库,slim自带了许多预训练的模型,比如ResNet.VGG.Inception-ResNet-v2(ILSVRC的新赢家)等等.这个…