傅立叶变换—DFT】的更多相关文章

背景:最近看到实验室其他同学在用傅立叶变换解决问题,我也想通过并行来解决这个问题,所以看了一下傅立叶变换的东西,感觉涵盖的东西还能多,我只是初步做了一下了解(一定很片面,但是我主要是为了应用它,主要了解它的实现原理),据我理解:傅立叶分析使用一系列sin函数和cos函数表示一个连续函数.傅立叶变化就是一个将时间域的函数序列f(k)映射到频率域上的函数序列F(j).序列f(k)表示一组信号采样的时间函数,序列F(j)表示傅立叶系数的分布,这个分布是关于频率的函数. 傅立叶原理表明:任何连续测量的时…
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致\(qwq\) 好的,那我们就开始我们的飞飞兔\(FFT\)算法吧! 偷偷说一句,\(FFT\)的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系--消去引…
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处理里则强调它是将图像信息从空间域往频率域转化的重要手段.最近从头学起数字图像处理,看完傅立叶变换之后,对于其中的计算方法快速傅立叶变换产生了好奇.于是搜索了下FFT,发现杭电上有几个这样的题目,其中点击率最高的是hdu1402*大数乘法. 大数乘法本来是一个n方的算法,经过FFT之后可以变为nlog…
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶…
注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方法称为变换域方法,最常见的变换域是频域. 使用Fourier变换把图像从空间域变换到频域.在频域内做对应增强处理,再从频域变换到空间域得到处理后的图像. 我们这里主要学习Fourier变换和FFT变换的算法,没有学过通信原理,我对信号.时域分析也不是非常清楚. 2.FFT算法 (1)离散Fourie…
说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真的是大神了. 本博文是经过查阅网上几十篇大神的博客.文章.书籍等进行的一个汇总,希望对初学者和我自己一个入门和总结,所以本博文并非原创,抄袭+汇总+修改+总结! 主要参考: 1.傅里叶变换到小波变换的风趣讲解:https://zhuanlan.zhihu.com/p/22450818 2.一篇外文的…
注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法称为变换域方法,最常见的变换域是频域. 使用Fourier变换把图像从空间域变换到频域.在频域内做对应增强处理,再从频域变换到空间域得到处理后的图像. 我们这里主要学习Fourier变换和FFT变换的算法,没有学过通信原理,我对信号.时域分析也不是非常清楚. 2.FFT算法 (1)离散Fourier…
原文:Win8 Metro(C#)数字图像处理--2.53图像傅立叶变换  [函数名称] 1,一维FFT变换函数         Complex[] FFT(Complex[] sourceData, int countN)   2,二维FFT变换函数           Complex[] FFT2(byte[] imageData,bool inv)   3,图像傅立叶变换幅度函数     WriteableBitmap FFTImage()   4,图像傅立叶变换相位函数     Wr…
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这种方法计算两个多项式相乘(逐位相乘)复杂度为\(O(n^2)\) 点值表示法 根据小学知识,一个\(n-1\)次多项式可以唯一地被\(n\)个点确定 即,如果我们知道了对于一个多项式的\(n\)个点\((x_1,y_1),(x_2,y_2)--(x_n,y_n)\) 那么这个多项式唯一满足,对任意\…
FFT(快速傅立叶变换)使用“分而治之”的策略来计算一个n阶多项式的n阶DFT系数的值.定义n为2的整数幂数,为了计算一个n阶多项式f(x),算法定义了连个新的n/2阶多项式,函数f[0](x)包含了f(x)中的x偶次幂项,函数f[1](x)f(x)中的x奇次幂项. f[0]=a0+a2x+a4x2+ ...+an-2xn/2-1 f[1]=a1+a3x+a5x2+ ...+an-1xn/2-1 则f(x) = f[0](x2)+ xf[1](x2),因此wn0,wn1,...wnn-1点计算f…