VAE】的更多相关文章

变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c357d85d72afd35935fd5253f8a4e53d4ad672d5321379584a6b6e02e9713966e5f908dd7020bfa0c555f dengfanxin 未来2016年11月15日 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoin…
一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argparse import torch import torch.utils.data import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision impor…
原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定这个样本受某种神秘力量操控,但是我们也无从知道这些神秘力量是什么?那么我们假定这股神秘力量有n个,起名字叫power1,power2,…,powern 吧,他们的大小分别是z1,z2,…,zn ,称之为神秘变量表示成一个向量就是 z=⎛⎝⎜⎜⎜⎜z1z2⋮zn⎞⎠⎟⎟⎟⎟ z也起个名字叫神秘组合.…
生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当然,恢复得到的是梦境而已,那个梦中的视觉.听觉.触觉以及嗅觉等等全和现实有关却也无关.有关是认知层次的有关,无关是表现出的内容的无关.sleep时进行生成,wake时进行认知.这个过程交替进行就构成了sleep-wake算法.它是一个宽松模型,或者说是一个Monte Carlo采样的EM逼近训练过程…
https://www.zhihu.com/question/41490383/answer/103006793 自编码是一种表示学习的技术,是deep learning的核心问题 让输入等于输出,取中间的一层作为embedding, 即编码 对中间的隐层进行约束,就可以得到不同类型的编码 h<x,这就是普通的降维编码 h>x, 并且约束其稀疏性,就得到稀疏编码 自编码网络,可以理解为, 完成训练后,Decoder部分就没有用了 堆叠自编码器(Stacked Auto-Encoder, SAE…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)                    学习编码解码过程,然后任意输入一个向量作为code通过解码器生成一张图片. VAE与AE的不同之处是:VAE的encoder产生与noise作用后输入到decoder            VAE的问题:VAE的decoder的输出与某一张越接近越好,但是对于机器来说并没有学会自己产生real…
深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/2015-11-27/vae.html 2. Paper: https://arxiv.org/pdf/1312.6114.pdf…
ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import numpy as np import tensorflow as tf import tflearn from matplotlib import pyplot as plt import sea…
VAE(Variational Autoencoder)   生成式模型 理论: 基于贝叶斯公式.KL散度的推导 1. 自动编码器的一般结构 2. 产生一幅新图像 输入的数据经过神经网络降维到一个编码(code),接着又通过另外一个神经网络去解码得到一个与输入原数据一模一样的生成数据,然后通过去比较这两个数据,最小化他们之间的差异来训练这个网络中编码器和解码器的参数.当这个过程训练完之后,我们可以拿出这个解码器,随机传入一个编码(code),希望通过解码器能够生成一个和原数据差不多的数据,上面这…