pandas.drop/isnull/fillna/astype的用法】的更多相关文章

删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据. (1)清理无效数据 df[df.isnull()] #返回的是个true或false的Series对象(掩码对象),进而筛选出我们需要的特定数据. df[df.notnull()] df.dropna() #将所有含有nan项的row删除 df.dropna(axis=1,thresh=3) #将在列的方向上三个为NaN的项删除 df.dropna(how='A…
今天用到了MySql里的isnull才发现他和MSSQL里的还是有点区别,现在简单总结一下: mysql中isnull,ifnull,nullif的用法如下: 1. isnull(expr) 的用法: 如expr 为null,那么isnull() 的返回值为 1,否则返回值为 0. mysql); mysql); 使用= 的null 值对比通常是错误的. isnull() 函数同 is null比较操作符具有一些相同的特性.请参见有关is null 的说明. 2. IFNULL(expr1,ex…
DROP:删除数据库已存在的表DROP TABLE tbname DELETE:删除记录delete from tbname truncate:清空表,重置索引truncate table tbname…
1.type 获取数据类型 2.dtype 数组元素的类型 3.astype 修改数据类型…
删除表数据的关键字,大家记得最多的可能就是delete.然而,我们做数据库开发,读取数据库数据.对另外的drop.truncate用得就比较少了. 1 drop 出没场合:drop table  table_name 绝招:删除内容和定义,释放空间.简单来说就是把整个表去掉.以后要新增数据是不可能的,除非新增一个表, 例如:一个班就是一个表,学生就是表中的数据,学生的职务就是定义 drop table class,就是把整个班移除.学生和职务都消失 比如下面testSchool数据库中有两张表[…
drop: drop table 表名:删表 truncate: truncate table 表名:清空数据 delete: delete table 表名 [where 条件]:删某数据 日志:delete有日志,可回滚…
本文链接:https://blog.csdn.net/Da_wan/article/details/80518725本文介绍numpy数组中这四个方法的区别ndim.shape.dtype.astype. 1.ndim ndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度. 2.shape shape:表示各位维度大小的元组.返回的是一个元组. 对于一维数组:有疑问的是为什么不是(1,6),因为arr1.ndim维度为1,元组内只返回一个数. 对于二维数组:前面的是行,后面的是列,…
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 pandas模块中有两个重要的数据结构对象:Series和DataFrame. 使用这两个数据结构对象可以在计算机的内存中构建虚拟的数据库. 1. Series对象 Series是一种类似于NumPy模块创建的一维数组的对象,与一维数组不同的是,Series对象不仅包含数据元素,还包含一组与数据元素…
函数形式:DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') 函数作用:删除DataFrame的指定行.指定列(可以多行多列). 函数参数:labels是指要删除的标签,一个或者是列表形式的多个,axis是指处哪一个轴,columns是指某一列或者多列,level是指等级,针对多重索引的情况,inplaces是否替换原来的dataframe…
MySql 里的IFNULL.NULLIF和ISNULL用法 mysql中isnull,ifnull,nullif的用法如下: isnull(expr) 的用法: 如expr 为null,那么isnull() 的返回值为 1,否则返回值为 0. mysql> select isnull(1+1); -> 0 mysql> select isnull(1/0); -> 1 使用= 的null 值对比通常是错误的. isnull() 函数同 is null比较操作符具有一些相同的特性.…
mysql中isnull,ifnull,nullif的用法如下: isnull(expr) 的用法:如expr 为null,那么isnull() 的返回值为 1,否则返回值为 0. mysql> select isnull(1+1);-> 0mysql> select isnull(1/0);-> 1使用= 的null 值对比通常是错误的. isnull() 函数同 is null比较操作符具有一些相同的特性.请参见有关is null 的说明. IFNULL(expr1,expr2…
参考:Pandas中关于 loc \ iloc \ ix 用法的理解 相同点 使用形式都是 df.xxx[ para1 , para2 ] #xxx表示loc iloc ix#df表示一个DataFrame实例 含义是从data提取指定行列的值,其中哪几行用para1声明,哪几列用para2声明,para1与para2的组织形式相同,一般用到的形式为以下4种: #para1取不同值时的行选取,para2取这样值时则为相应的列选取 : 所有行 0:2 第1.2行,下标为0.1 7:9 第8.9行,…
官方文档:pandas之DataFrame 1.构造函数 用法 pandas.DataFrame( data=None, index=None, columns=None, dtype=None, ) 参数 参数 类型 说明 data ndarray.iterable.dict.DataFrame 用于构造DataFrame的数据(注意,用某个DataFrame构造另一个DataFrame,可能会导致同步修改的问题:如果要得到某个DataFrame的副本,可以用df.copy()) index…
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5.2基本功能 5.2.1重新索引5.2.2丢弃指定轴上的项5.2.3索引.选取和过滤5.2.4算术运算和数据对齐5.2.4.1在算术方法中填充值5.2.4.2 DataFrame和Series之间的运算5.2.5函数应用和映射5.2.6排序和排名5.2.7带有重复的轴索引5.3汇总和计算描述性统计5.…
numpy.scipy官方文档  pandas官方网站  matplotlib官方文档 一.数据结构 二.数据处理 1.数据获取(excel文件数据基本信息) #coding=utf-8 import pandas as pd import numpy as np excel_data = pd.read_excel("test.xlsx") print excel_data.shape #显示数据多少行多少列 print excel_data.index #显示数据所有行的索引数 p…
1.读取.csv文件 df2 = pd.read_csv('beijingsale.csv', encoding='gb2312',index_col='id',sep='\t',header=None) 参数解析见:https://www.cnblogs.com/datablog/p/6127000.html index_col用于指定用作行索引的列编号或者列名,sep用于指定文件的分隔符(默认是以,作为分隔符),header=None 不用文件的的第一行作为列索引 文件读取之后生成的是一个D…
其实每一篇博客我都要用很多琐碎的时间片段来学完写完,每次一点点,用到了就学一点,学一点就记录一点,要用上好几天甚至一两个礼拜才感觉某一小类的知识结构学的差不多了. Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作.它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的.简单地说,你可以把 Pandas 看作是 Python 版的 Excel. 一.  数据结构介绍 在pandas中有两类非常重要的…
Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming l…
目录 Series 利用dict来创建series 利用标量创建series 取 Dataframe 利用dict创建dataframe 选择 添加列 列移除 行的选择, 添加, 移除 Panel Basic Functionality Series DataFrame Descriptive Statistic 绑定自定义函数 pipe, apply, applymap Reindex reindex_like 插补 limit Renaming Iteration iteritems() (…
前言 上一篇学习中学成的随笔是我的第一篇随笔,撰写中有颇多不足,比如事无巨细的写入学习过程反而像是在抄书,失去了很多可读性也不利于自己反过头来复习,本章节学习需要多加注意,尽量写下较为关键的内容,犯下的错误,难以理解的概念等等 pandas含有使数据清洗和分析工作变得更快更简单的数据结构和操作工具.pandas经常和其它工具一同使用,如数值计算工具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib.pandas是基于NumPy数组构…
  数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理方法为滤掉或者填充. 滤除缺失数据   对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如:   但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:…
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 第9节 绘图和可视化 pandas 回顾 一.实验简介 学习数据分析的课程,需要同学们掌握好 Python 的语言基础,和对 Numpy 与 Matplotlib 等基本库有一些了解.同学们可以参考学习实验楼的 Python 语言基础教程与 Python 科学计算的课程. pandas 是后面我们…
Tushare返回的是pandas的DataFrame格式,但是执行以下代码时报错:TypeError: Empty 'DataFrame': no numeric data to plot import tushare as ts df_all = ts.realtime_boxoffice() df_box_office = df['BoxOffice'] df_box_office.index = df['Irank'] df_box_office.plot(kind='bar') 反复输…
pandas是专门为处理表格和混杂数据设计的,NumPy更适合处理统一的数值数组数据. pandas的数据结构: Series:Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 如果只传入一个字典,则结果Series中的索引就是原字典的键(有序排列). pandas的isnull和notnull函数可用于检测缺失数据. DataFrame:DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(…
Pandas pandas是一个流行的开源Python项目,其名称取panel data(面板数据)与Python data analysis(Python 数据分析)之意. pandas有两个重要的数据结构:DataFrame和Series pandas数据结构之DataFrame pandas的DataFrame数据结构是一种带标签的二维对象,与Excel的电子表格或者关系型数据表非常相似. 可以用下列方式来创建DataFrame: 1.从另一个DataFrame创建DataFrame 2.…
pandas库,含有使数据清洗和分析工作变得更快更简单的数据结构和操作工具.pandas是基于NumPy数组构建. pandas常结合数值计算工具NumPy和SciPy.分析库statsmodels和scikitlearn,和可视化库matplotlib等工具一同使用. 5.1 pandas数据结构介绍 pandas的主要数据结构:Series和DataFrame (1)Series Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)…
本文始发于个人公众号:TechFlow,原创不易,求个关注 上周我们关于Python中科学计算库Numpy的介绍就结束了,今天我们开始介绍一个新的常用的计算工具库,它就是大名鼎鼎的Pandas. Pandas的全称是Python Data Analysis Library,是一种基于Numpy的科学计算工具.它最大的特点就是可以像是操作数据库当中的表一样操作结构化的数据,所以它支持许多复杂和高级的操作,可以认为是Numpy的加强版.它可以很方便地从一个csv或者是excel表格当中构建出完整的数…
1.read_csv li_index = ['round_id', 'index', 'c-sequen' ] dataset = pd.read_csv(file, low_memory=False, sep='\t', names=li_index) 2.insert # 方法1 dataset.insert(2, 'G' , 'Test') # 方法2 dataset['D']='ColumnD' 3.分列 dataset.insert(2, 'G' , dataset['h-next_…
本文来源于<利用python进行数据分析>中文版,大家有兴趣可以看原版,入门的东西得脚踏实地哈 1.pandas 数据结构介绍 首先熟悉它的两个主要数据结构,Series 和 DataFrame Series 是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签组成. obj = pd.Series([4, 7, -5, 3]) obj Out[4]: 0 4 1 7 2 -5 3 3 dtype: int64 Series字符串表现形成为:索引在左,值在右,可以通过Series…
开始之前,pandas中DataFrame删除对象可能存在几种情况 1.删除具体列 2.删除具体行 3.删除包含某些数值的行或者列 4.删除包含某些字符.文字的行或者列 本文就针对这四种情况探讨一下如何操作. 数据准备 模拟了一份股票交割的记录. In [1]: import pandas as pd In [2]: data = { ...: '证券名称' : ['格力电器','视觉中国','成都银行','中国联通','格力电器','视觉中国','成都银行','中国联通'], ...: '摘要…