AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision.如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标.为什么AUC和logloss比accuracy更常用呢?因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy,需要先把概率转化成类别,这…
http://blog.csdn.net/pipisorry/article/details/51788927 在样本分布及其不均匀的情况下,建议用PRC...可以看下这个精确率.召回率.F1 值.ROC.AUC 各自的优缺点是什么? - 机器学习里面qian lv的回答…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.风控建模流程以及分类模型建设 1.建模流程 该图源自课程讲义.主要将建模过程分为了五类.数据准备.变量粗筛.变量清洗.变量细筛…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share —————————————————————————————————————————— 一.风控建模流程以及分类模型建设 1.建模流程 该图源自课程讲义.主要将建模过…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
深入理解对比两个曲线各自的特性和相互的差异需要花不少时间研读一些国外的技术博客与相关paper,暂时先列出下面这么多,这部分后续可以继续补充. ROC曲线和AUC的定义可以参看“ROC曲线于AUC”,Precision-Recall曲线顾名思义即Precision为纵轴,Recall为横轴的曲线,作图方法与AUC曲线一致,只是横纵轴坐标意义不同. ROC曲线的优势 ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持稳定.在实际的数据集中经常会出现类不平衡现象,而且…
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具.通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确? 一句话概括版本: ROC是一条线,如果我们选择用ROC曲线评判模型的准确性,那么越靠近左上角的ROC…
这里主要讲的是对分类模型的评估. 1.准确率(Accuracy) 准确率的定义是:[分类正确的样本] / [总样本个数],其中分类正确的样本是不分正负样本的 优点:简单粗暴 缺点:当正负样本分布不均衡的情况(假设一种极端情况,正样本1个,负样本99个),此时即使一个比较差的模型(只会将所用的样本预测成负样本),那它也有99%的准确率. 总结一下就是 当样本分布不均匀,该指标意义不大 改进方案: 1.在不同样本分类下求它的准确率,然后取平均值 2.选取其他评价指标 2.PR曲线 Precision…
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…
混淆矩阵 精准率/查准率,presicion 预测为正的样本中实际为正的概率 召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR F1分数,同时考虑查准率和查全率,二者达到平衡,=2*查准率*查全率/(查准率+查全率) 真正率 = 灵敏度 sensitivity 召回率 TP/TP+FN ,只关注正样本中有多少被准确预测 假正率 = 1- 特异度 = FP/(FP+TN),有多少负样本被错误预测   在正负样本足够的情况下,可以用ROC曲线.AUC.KS评价模型区分能力和排序…