nn.Module基类的构造函数: def __init__(self): self._parameters = OrderedDict() self._modules = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = OrderedDict() self._forward_hooks = OrderedDict() self.training = True 其中每个属性的解释如下: _parameters:…
一.背景知识 python中两个属相相关方法 result = obj.name 会调用builtin函数getattr(obj,'name')查找对应属性,如果没有name属性则调用obj.__getattr__('name')方法,再无则报错 obj.name = value 会调用builtin函数setattr(obj,'name',value)设置对应属性,如果设置了__setattr__('name',value)方法则优先调用此方法,而非直接将值存入__dict__并新建属性 二.…
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Parameter nn.functional中的函数更像是纯函数,由def function(input)定义. 由于两者性能差异不大,所以具体使用取决于个人喜好.对于激活函数和池化层,由于没有可学习参数,一般使用nn.functional完成,其他的有学习参数的部分则使用类.但是Droupout由于在训…
由于pytorch会自动舍弃图计算的中间结果,所以想要获取这些数值就需要使用钩子函数. 钩子函数包括Variable的钩子和nn.Module钩子,用法相似. 一.register_hook import torch from torch.autograd import Variable grad_list = [] def print_grad(grad): grad_list.append(grad) x = Variable(torch.randn(2, 1), requires_grad…
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础RNN网络回归问题 『TensotFlow』深层循环神经网络 『TensotFlow』LSTM古诗生成任务总结 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵…
上一节我们已经谈到了计算节点,但是即使是官方文档介绍里面相关内容也过于简略,我们使用Faster-RCNN代码中的新建节点为例,重新介绍一下新建节点的调用栈. 1.调用新建节点 参数分为三部分,op_type是节点名称,对应于辅助class的装饰器的输入:其他参数一部分传递给辅助class的初始化函数(这部分参数的虚参名和初始化函数的需参名要对应上),一部分直接作为一个list传给节点定义class的forward函数的in_data参数. group = mx.symbol.Custom(ro…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下 在前面的例子中,基本上都是将每一层的输出直接作为下一层的输入,这种网络称为前馈传播网络(feedforward neural network).对于此类网络如果每次都写复杂的forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential.其中Sequential是一个特殊的module,它包含几个子Module,前向传播时…
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用 data import torch as t from torch.autograd import…
『PyTorch』第二弹_张量 Tensor基础操作 简单的初始化 import torch as t Tensor基础操作 # 构建张量空间,不初始化 x = t.Tensor(5,3) x -2.4365e-20 -1.4335e-03 -2.4290e+25 -1.0283e-13 -2.8296e-07 -2.0769e+22 -1.3816e-33 -6.4672e-32 1.4497e-32 1.6020e-19 6.2625e+22 4.7428e+30 4.0095e-08 1.…
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及backward()的一些API.同时包含着和张量相关的梯度 nn.Module - 神经网络模块,便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西 nn.Parameter - 一种变量(Variable),当将任何值赋予Module时自动注册为一个参数 autograd.Functi…
一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self.features = t.nn.Sequential( t.nn.Conv2d(3, 6, 5), t.nn.ReLU(), t.nn.MaxPool2d(2, 2), t.nn.Conv2d(6, 16, 5), t.nn.ReLU(), t.nn.MaxPool2d(2…
一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 import torch as t     class LeNet(t.nn.Module):     def __init__(self):         super(LeNet, self).__init__()         self.features = t.nn.Sequential(  …
一.本章要点 match表达式是更好的switch,不会有意外调入下一个分支 如果没有模式能够匹配,会抛出MatchError,可以用case _模式避免 模式可以包含一个随意定义的条件,称做守卫 你可以对表达式的类型进行匹配;优先选择模式匹配而不是isInstanceOf/asInstanceOf 你可以匹配数组,元祖,样例类的模式,然后匹配到不同部分绑定到变量 在for表达式中,不能呢匹配的情况会被安静的跳过 样例类是编译器会为之自动 二.更好的switch var sign=... val…
表中的字段名和表对应实体类的属性名称不一定都是完全相同的,这种情况下的如何解决字段名与实体类属性名不相同的冲突.如下所示: 一.准备演示需要使用的表和数据 CREATE TABLE my_user( user_id INT PRIMARY KEY AUTO_INCREMENT, user_no VARCHAR(20), user_age int ); INSERT INTO my_user(user_no , user_age ) VALUES('myl', 15); INSERT INTO m…
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进行补充. 除了之前的.data进行赋值,或者.data.初始化方式外,我们可以使用torch.nn.init进行初始化参数. from torch.nn import init linear = nn.Linear(3, 4) t.manual_seed(1) init.xavier_normal(…
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None.叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的. variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那…
全流程地址 一.辅助API介绍 mxnet.image.ImageDetIter 图像检测迭代器, from mxnet import image from mxnet import nd data_shape = 256 batch_size = 32 rgb_mean = nd.array([123, 117, 104]) def get_iterators(data_shape, batch_size): """256, 32""" cla…
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性映射 from torch.autograd import Function class MultiplyAdd(Function): # <----- 类需要继承Function类 @staticmethod # <-----forward和backward都是静态方法 def forward(…
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和hook方法都是很强大的工具,更详细的用法参考官方api文档,这里举例说明基础的使用.推荐使用hook方法,但是在实际使用中应尽量避免修改grad的值. 求z对y的导数 x = V(t.ones(3)) w = V(t.rand(3),requires_grad=True) y = w.mul(x) z…
对比TensorFlow和Pytorch的动静态图构建上的差异 静态图框架设计好了不能够修改,且定义静态图时需要使用新的特殊语法,这也意味着图设定时无法使用if.while.for-loop等结构,而是需要特殊的由框架专门设计的语法,在构建图时,我们需要考虑到所有的情况(即各个if分支图结构必须全部在图中,即使不一定会在每一次运行时使用到),使得静态图异常庞大占用过多显存. 以动态图没有这个顾虑,它兼容python的各种逻辑控制语法,最终创建的图取决于每次运行时的条件分支选择,下面我们对比一下T…
说明:本文是个人翻译文章,由于个人水平有限,有不对的地方请大家帮忙更正. 原文:dotnet-install scripts reference 翻译:dotnet-install 脚本参考 名称 dotnet-install.ps1 | dotnet-install.sh - 用于安装命令行界面(CLI)工具的脚本和共享运行时 概要 Windows: dotnet-install.ps1 [-Channel] [-Version] [-InstallDir] [-Debug] [-NoPath…
一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.po…
Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arange(0,6) print(a.storage()) b = a.view(2,3) print(b.storage()) print(id(a.storage())==id(b.storage())) a[1] = 10 print(b) 上面代码,我们通过.storage()可以查询到Tensor…
一.基本队列: 队列有两个基本操作,对应在tf中就是enqueue&dequeue tf.FIFOQueue(2,'int32') import tensorflow as tf '''FIFO队列操作''' # 创建队列 # 队列有两个int32的元素 q = tf.FIFOQueue(2,'int32') # 初始化队列 init= q.enqueue_many(([0,10],)) # 出队 x = q.dequeue() y = x + 1 # 入队 q_inc = q.enqueue(…
torch.autograd 包提供Tensor所有操作的自动求导方法. 数据结构介绍 autograd.Variable 这是这个包中最核心的类. 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作.一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度,Variable有三个属性: 访问原始的tensor使用属性.data: 关于这一Variable的梯度则集中于 .grad: .creator反映了创建者,标识了是否由用户使用.Variable直接创建(No…
参考:http://www.jianshu.com/p/5ae644748f21# 几个数学概念: 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2) 矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字,如[1,2;3,4] 其实标量,向量,矩阵它们三个也是张量,标量是零维的张量,向量是一维的张量,矩阵是二维的张量,除此之外,张量不仅可以是三维的,还可以是四维的.五维的... 一点小注意: 1.由于torc…
有下面代码可以看出torch层函数(nn.Module)用法,使用超参数实例化层函数类(常位于网络class的__init__中),而网络class实际上就是一个高级的递归的nn.Module的class. 通常 torch.nn的核心数据结构是Module,它是一个抽象概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络. 在实际使用中,最常见的做法是继承nn.Module,撰写自己的网络/层. 自定义层Linear必须继承nn.Module,并且在其构造函数中…
一.普通索引 示例 a = t.Tensor(4,5) print(a) print(a[0:1,:2]) print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同 print(a[[1,2]]) # 容器索引 3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 3.3845e+15 0.0000e+00 3.3845e+15 0.0000e+00 3.3418e+15 0.0000e+00 3.3845e+15 0.0000e+00 3…
一.创建Tensor 特殊方法: t.arange(1,6,2)t.linspace(1,10,3)t.randn(2,3) # 标准分布,*size t.randperm(5) # 随机排序,从0到n t.normal(means=t.arange(0, 11), std=t.arange(1, 0, -0.1)) 概览: """创建空Tensor""" a = t.Tensor(2, 3) # 创建和b大小一致的Tensor c = t.Te…