np.random.normal()正态分布】的更多相关文章

高斯分布的概率密度函数 numpy中 numpy.random.normal(loc=0.0, scale=1.0, size=None) 参数的意义为: loc:float 概率分布的均值,对应着整个分布的中心center scale:float 概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高 size:int or tuple of ints 输出的shape,默认为None,只输出一个值 我们更经常会用到np.random.randn(size)所谓标准正…
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html #np.random.normal,产生制定分布的数集#http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html# mean and standard deviation# 均值的物理意义mu,Mean (“centre”) of the distr…
高斯分布(Gaussian Distribution)的概率密度函数(probability density function): \[ f(x)=\frac1{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) \] 对应于numpy中: numpy.random.normal(loc=0.0, scale=1.0, size=None) 参数的意义为: loc:float 此概率分布的均值(对应着整个分布的中心centre) scale:…
X ~ :随机变量X的取值和其对应的概率值P(X = ) 满足正态分布(高斯函数) 很多随机现象可以用正态分布描述或者近似描述 某些概率分布可以用正态分布近似计算 正态分布(又称高斯分布)的概率密度函数   numpy中 numpy.random.normal(loc=0.0, scale=1.0, size=None) 参数的意义为: loc:float 概率分布的均值,对应着整个分布的中心center scale:float 概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scal…
import numpy as np import matplotlib.pyplot as plt def fix_seed(seed=1): #重复观看一样东西 # reproducible np.random.seed(seed) # make up data建立数据 fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.ran…
np.random.rand用法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 生成特定形状下[0,1)下的均匀分布随机数 np.random.rand(a1,a2,a3...)生成形状为(a1,a2,a3...),[0,1)之间的 均匀分布 随机数 np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.949098…
np.random的随机数函数(1) 函数 说明 rand(d0,d1,..,dn) 根据d0‐dn创建随机数数组,浮点数, [0,1),均匀分布 randn(d0,d1,..,dn) 根据d0‐dn创建随机数数组,标准正态分布 randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high) seed(s) 随机数种子, s是给定的种子值 np.random.rand import numpy as np a = np.random.ran…
np.random模块常用的一些方法介绍 名称 作用 numpy.random.rand(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数. numpy.random.randn(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布. numpy.random.randint(low, high=None, size=None…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
(1)np.random.randn()函数 语法: np.random.randn(d0,d1,d2……dn) 1)当函数括号内没有参数时,则返回一个浮点数: 2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵: 3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵: 4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tupl…