题目链接:https://vjudge.net/problem/LightOJ-1030 1030 - Discovering Gold    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can…
题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 \times N\) grid. Each cell of the cave can contain any amount of gold. Initially you are in position \(1\). Now each turn you throw a perfect \(6\) s…
Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold. Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice a…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 题意:在一个1*n 的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币.  现在有一个人在1这个位置,手里有一颗骰子,骰子摇到几,他就前进几步,但如果当前位置+骰子数 > n,那么他就会重新摇色子一直到<=n为止. 走到n这个位置的话,意味着游戏结束了. 问游戏结束时,这个人得到金币的期望. 设dp[i]表示从i号格子出去的期望,所以dp[i]是和i后…
题目大意:给出长度为n的一条隧道,每个位置都有一定数量的财宝.给你一枚骰子,roll到几点就前进几步,如果即将到达的地方超过了这条隧道长度,就重新roll一次,走到n点结束.求这个过程能收获多少财宝. 题目思路:很明显问题是求期望值的. 期望值公式: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) (p为概率,x为某一点价值). 具体看代码 #include<cstdio> #include<stdio.h> #include<cstdl…
题目链接:https://cn.vjudge.net/problem/LightOJ-1030 You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold. Initially you are in position 1. Now each turn you throw a perfect 6 si…
题意:1~n每格都有金子,每次掷骰子,掷到多少走几步,拿走那格的金子,问你金子的期望 思路:dp[i]表示从i走到n金子的期望,因为每次最多走1<=x<=6步,所以dp[i] = a[i] + sum(1 / x * dp[j]) 代码: #include<set> #include<map> #include<stack> #include<cmath> #include<queue> #include<vector>…
https://vjudge.net/problem/LightOJ-1030 题意: 在一个1×N的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币. 现在从1格子开始,每次摇骰子,他就前进几步,但有一种情况例外,如果当前位置+色子数 > N,那么他就会重新摇色子. 走到N这个位置的话,意味着游戏结束了. 问游戏结束时,这个人得到金币的期望. 思路:这里给出两种做法,一种是正序求解,一种是逆序求解. ①正序求解: 这种做法是从前往后计算每个格子的概率,假设我们现在处于第…
正推,到达i的概率为p[i],要注意除了1和n外,到达i的概率并不一定为1 概率表达式为p[i] += p[j] / min(n - j, 6) 从j带过来的期望为exp[i] += exp[j] / min(n - j, 6) 又到达i时有价值val[i],到达i的概率为p[i],故exp[i] += val[i] * p[i] #include<cstdio> #include<iostream> #include<cstdlib> #include<cstr…
期望,$dp$. 设$ans[i]$为$i$为起点,到终点$n$获得的期望金币值.$ans[i]=(ans[i+1]+ans[i+2]+ans[i+3]+ans[i+4]+ans[i+5]+ans[i+6])/6+a[i]$,不到$6$个的单独处理一下. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cm…