BZOJ UOJ 记\(val_i\)是每条边的边权,\(s\)是边权和,\(t\)是经过边数,\(k\)是给定的\(k\). 在点分治的时候二分答案\(x\),设\(|\frac st-k|=x\),判断是否还能满足\(|\frac st-k|<x\). 因为是绝对值,分两种情况: \(\frac st-k\geq 0\to \sum val_i-k\geq 0\), 判断是否有\(\frac st-k< x\to\quad s-t*k<t*x\to\quad\sum val_i-k&…
[BZOJ4738/UOJ#276]汽水(点分治,分数规划) 题面 BZOJ UOJ 题解 今天考试的题目,虽然说是写完了,但是感觉还是半懂不懂的来着. 代码基本照着\(Anson\)爷的码的,orz.(然后Anson爷的UOJrk1不保了) 首先拿到这道题目的一个比较显然的思路就是分数规划二分答案之后再点分治考虑是否有满足二分条件的链. 考虑条件是什么呢?(接下来写的时候为了方便,把所有的边权默认全部减去了一个\(K\),这样子就是要求平均值的绝对值最小的链了) 因为要的是绝对值最小,那么我们…
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq 10^{13}\) 分析 看到分数考虑分数规划,二分答案 \(x\),式子转化成 \(-x< \frac{\sum w}{t}-k< x\) 将边权变为 \(w-k\) 消除 \(k\) 的影响.但是不能够直接求最长链.因为是路径,考虑点分治. 二分答案 \(x\) 之后考虑两条路径组合 \((A…
传送门 没想到点分治那一层-- 首先不难发现这是个分数规划,先把所有的边长减去\(k\),二分答案,设为\(mid\),就是要求路径平均值\(ans\in[-mid,mid]\) 先来考虑\(ans\in[0,mid]\)的的情况.我们考虑点分治,记下所有从根节点延伸下去的链,长度记为\(len\),边数为\(dep\),属于那一颗子树为\(bl\),先添加一条链\((0,0,0)\),那么两条链合法当且仅当\(\frac{len_i+len_j}{dep_i+dep_j}\in [0,mid]…
点此看题面 大致题意: 给你一棵树,要求你选择一条树上路径,使得这条路径上边权的平均值与定值\(k\)的差的绝对值最小.求出这个最小值. 分数规划 看到平均值,首先就应该想到分数规划吧. 我们二分答案\(x\),设选择了\(m\)条边,每条边边权为\(a_i\). 则答案\(x\)合法,需要满足: \[|\frac{\sum_{i=1}^ma_i}m-k|\le x\] 拆绝对值: \[-x\le\frac{\sum_{i=1}^ma_i}m-k\le x\] 每个式子同时乘上\(m\),去分母…
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一条路径连接.这些城市生产的汽水有许多不同的风味,在经过道路 \(i\) 时,牛牛会喝掉 \(w_i\) 的汽水.牛牛非常喜欢喝汽水,但过量地饮用汽水是有害健康的,因此,他希望在他旅行的这段时间内,平均每天喝到的汽水的量尽可能地接近给定的一个正整数 \(k\). 同时,牛牛希望他的旅行计划尽可能地有趣…
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的结点的深度来确定$tb数组$中的滑块. 因为分数规划要找的是$max$,BFS遍历当前结点的深度越来越大,这样滑块也是单调向右滑动,所以滑块里的最大值就应当用单调队列解决 #include<cstdio> #include<algorithm> #define read(x) x=ge…
题目大意:给定一棵树,求一条长度在L到R的一条路径,使得边权的平均值最大. 题解 树上路径最优化问题,不难想到点分治. 如果没有长度限制,我们可以套上01分数规划的模型,让所有边权减去mid,求一条路径长度非负. 现在考虑有L和R的限制,就是我们在拼接两条路径的时候,每条路径能够匹配的是按深度排序后一段连续区间,我们只需要维护区间最大值. 然后随着深度的单调变化,这个区间在滑动,这就变成了滑动窗口问题. 代码 #include<iostream> #include<cstdio>…
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l,r,dl,dr)$表示处理区间$[l,r]$时,这段区间的决策点已固定在$[dl,dr]$中 设$mid=(l+r)/2$,暴力处理$mid$的最优决策点$dm$ 再向下分治$ask(l,mid-1,dl,dm)$,$ask(mid+1,r,dm,dr)$ 对于本题,先按$t[i]/p[i]$从大…
Description 传送门 Solution 看到那个式子,显然想到分数规划...(不然好难呢) 然后二分答案,则每条边的权值设为g(e)-ans.最后要让路径长度在[L,U]范围内的路径权值>=0 接下来我们就要找路径了.. 考虑树形dp或者分治. 假如是树形dp需要用长链剖分优化. 我的写法是点分治,非常暴力的思路em.就是枚举经过某个点的路径,注意判断长度.mx[i]记录子树内深度为i的点到目前重心的最大权值. Code #include<iostream> #include&…