机器学习技法笔记:16 Finale】的更多相关文章

Roadmap Feature Exploitation Techniques Error Optimization Techniques Overfitting Elimination Techniques Machine Learning in Practice Summary…
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是如何分类的,如下图,找到一条线,将两类训练数据点分开即可: PLA的最后的直线可能有很多条,那到底哪条好呢?好坏的标准则是其泛化性能,即在测试数据集上的正确率,如下,下面三条直线都能正确的分开训练数据,那到底哪个好呢?SVM就是解决这个问题的. SVM求解 直觉告诉我们最右的要好一些,因为测试数据的…
Roadmap Feature Exploitation Techniques Error Optimization Techniques Overfitting Elimination Techniques Machine Learning in Practice Summary…
原文地址:https://www.jianshu.com/p/1db700f866ee 问题描述 程序实现 # kNN_RBFN.py # coding:utf-8 import numpy as np import matplotlib.pyplot as plt def ReadData(dataFile): with open(dataFile, 'r') as f: lines = f.readlines() data_list = [] for line in lines: line…
原文地址:https://www.jianshu.com/p/7ff6fd6fc99f 问题描述 程序实现 13-15 # coding:utf-8 # decision_tree.py import numpy as np def ReadData(dataFile): with open(dataFile, 'r') as f: lines = f.readlines() data_list = [] for line in lines: line = line.strip().split(…
原文地址:http://www.jianshu.com/p/9bf9e2add795 AdaBoost 问题描述 程序实现 # coding:utf-8 import math import numpy as np import matplotlib.pyplot as plt def ReadData(dataFile): with open(dataFile, 'r') as f: lines = f.readlines() data_list = [] for line in lines:…
原文地址:https://www.jianshu.com/p/6bf801bdc644 特征变换 问题描述 程序实现 # coding: utf-8 import numpy as np from cvxopt import matrix, solvers from sklearn import svm def gen_data(): X = [[1, 0], [0, 1], [0, -1], [-1, 0], [0, 2], [0, -2], [-2, 0]] X = np.array(X)…
Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosting in Action Summary…
Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of Extraction Models Summary…
Roadmap Motivation Neural Network Hypothesis Neural Network Learning Optimization and Regularization Summary…