Intro In an earlier post I talked about Spark and sparklyR and did some experiments. At my work here at RTL Nederland we have a Spark cluster on Amazon EMR to do some serious heavy lifting on click and video-on-demand data. For an R user it makes per…
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame 作者介绍 Reynold Xin, Michael Armbrust and Davies Liu 文章正文 Today, we are excited to announce a new DataFrame API designed to make big data processing even…
本文有两重目的,一是在性能方面快速对比下R语言和Spark,二是想向大家介绍下Spark的机器学习库 背景介绍 由于R语言本身是单线程的,所以可能从性能方面对比Spark和R并不是很明智的做法.即使这种比较不是很理想,但是对于那些曾经遇到过这些问题的人,下文中的一些数字一定会让你很感兴趣. 你是否曾把一个机器学习的问题丢到R里运行,然后等上好几个小时?而仅仅是因为没有可行的替代方式,你只能耐心地等.所以是时候去看看Spark的机器学习了,它包含R语言大部分的功能,并且在数据转换和性能上优于R语言…
What is Spark Apache Spark is a cluster computing framework, similar to Apache Hadoop. Wikipedia has a great description of it: Apache Spark is an open source cluster computing framework originally developed in the AMPLab at University of California,…
.NET for Spark可用于处理成批数据.实时流.机器学习和ad-hoc查询.在这篇博客文章中,我们将探讨如何使用.NET for Spark执行一个非常流行的大数据任务,即日志分析. 1 什么是日志分析? 日志分析的目标是从这些日志中获得有关工具或服务的活动和性能的有意义的见解.NET for Spark使我们能够快速高效地分析从兆字节到千兆字节的日志数据! 在这篇文章中,我们将分析一组Apache日志条目,这些条目表示用户如何与web服务器上的内容交互.您可以在这里查看Apache日志…
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spar…
a = matrix(     c(2, 4, 3, 1, 5, 7), # the data elements     nrow=2,              # number of rows     ncol=3,              # number of columns     byrow = TRUE)        # fill matrix by rows     class( (a[1,])[1] "numeric" class(a[c(1,2),])[1] &…
原文:http://blog.csdn.net/tanglizhe1105/article/details/51050974 背景 很多使用Spark的朋友很想知道rdd里的元素是怎么存储的,它们占用多少存储空间?本次我们将以实验的方式进行测试,展示rdd存储开销性能. 关于rdd的元素怎么存储,Spark里面实现了好几种不同类型的rdd,如最常见的MapPartitionsRDD,它处理map,filter,mapPartition等不引起shuffle的算子:再如ShuffledRDD它由s…
http://spark.apache.org/docs/latest/sql-programming-guide.html…
When working with big data with R (say, using Spark and sparklyr) we have found it very convenient to keep data handles in a neat list ordata_frame. Please read on for our handy hints on keeping your data handles neat. When using R to work over a big…