图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不…
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,…
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了mst数组 mst[i]:这个数组对应的下标(图顶点)的值,是当前最小生成树表示的顶点的连接的那个边的权值 我们假设v1是初始点,进行初始化,不相连的用*表示,表示无穷大! 我们先把所有v1对应的顶点的权值放进lowcost数组中,进行初始化,之后…
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法. 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,…
最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边,选完最小权值的边,把在所选边的另一顶点的边加入数组,再选权值最小的边,如此循环(有多少顶点循环多少次) ∞ 我们代码中用65535表示 //定义邻接矩阵 let Arr2 = [ [0, 10, 65535, 65535, 65535, 11, 65535, 65535, 65535], [10,…
/* 普里姆算法的主要思想: 利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录 */ # include <stdio.h> typedef char VertexType;//定义顶点类型 typedef int EdgeType;//定义边上的权值类型 # define MAX_VERTEX //最大顶点个数 # define INFINITY //用65535代表无穷大 typedef struct {//邻接矩阵存储结构 VertexType vexs[…
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi.Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和:如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3 输出样例#1…
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条. 可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短) 普利姆算法介绍 利姆(Prim)算法求最小生成树,也就是在包含n个…
普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条. 可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短). 2. 普利姆算法介绍 利姆(Prim)算法求最…
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的想法,只不过构建时要考虑是否会形成环而已,此时我们就用到了图的存储结构中的边集数组结构,如图7-6-7 假设现在我们已经通过邻接矩阵得到了边集数组edges并按权值从小到大排列如上图. 下面我们对着程序和每一步循环的图示来看: 算法代码:(改编自<大话数据结构>)  C++ Code …