机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来…
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
一门课的课后题答案,在这里备份一下: 面向对象程序设计语言 –  比较分析C++.Java.Python.R语言的面向对象特征,这些特征如何实现的?有什么相同点? C++ 语言的面向对象特征: 对象模型:封装 (1)  访问控制机制: C++提供完善的访问控制机制,分别是: public,protected和private. private, public, protected 访问标号的访问范围 public 可访问 1.该类中的函数 : 2.子类的函数: 3.其友元函数访问:4.该类的对象访…
用蒙特卡洛方法算pi-基于python和R语言 最近follow了MOOC上一门python课,开始学Python.同时,买来了概率论与数理统计,准备自学一下统计.(因为被鄙视过不是统计专业却想搞数据分析) 有趣的是书里面有一块讲蒲丰投针计算Pi,这是一种随机模拟法,也就是蒙特卡洛法.蒲丰投针之于我太难,暂时没想到怎么用计算机模拟这一过程. python课中,老师也提到用随机模拟法,也就是蒙特卡洛法(MonteCarlo),用计算机模拟几千次实验,计算pi的近似值.好巧. 就拿python课中的…
预测分析建模 Python与R语言实现 目录 前言 第1章 分析与数据科学1第2章 广告与促销10第3章 偏好与选择24第4章 购物篮分析31第5章 经济数据分析42第6章 运营管理56第7章 文本分析72第8章 情感分析93第9章 体育分析132第10章 空间数据分析146第11章 品牌和价格165第12章 大型的小数字游戏188附录A 数据科学方法191附录B 测量方法204附录C 案例研究212附录D 编码和脚本226参考文献259 下载地址:https://pan.baidu.com/s…
K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言实现 k-means算法是将数值转换为距离,然后测量距离远近进行聚类的.不归一化的会使得距离非常远. 补充:scale归一化处理的意义 两个变量之间数值差别太大,比如年龄与收入的数值差别就很大. 步骤 第一步,确定聚类数量,即k的值 方法:肘部法则+实际业务需求 第二步,运行K-means模型 求出…
Julia是一款高级高效为技术计算(technical computing)而设计的编程语言,其语法与其他计算环境类似.其为分布式计算和并行所设计,最知名的地方在于其接近C语言的高效率. 按开发者的话说,“我们希望这门开源语言像C一样快…像Python一样通用,像R做统计那么简单,像Perl做文本处理那么方便,像Matlab的线性代数一样强大,还和Shell一样可以把各种程序连接起来”. 打开Julia的首页http://julialang.org/,在一长串特性介绍后面,便是和各种语言的对比测…
首先当然要配置r语言环境变量什么的 D:\R-3.5.1\bin\x64; D:\R-3.5.1\bin\x64\R.dll;D:\R-3.5.1;D:\ProgramData\Anaconda3\Lib\site-packages\rpy2; 本来用python也可以实现关联规则,虽然没包,但是可视化挺麻烦的 #!/usr/bin/env python3 # -*- coding: utf-8 -*- from pandas import read_csv def loadDataSet():…
网络上经常看到有人问数据分析是学习Python好还是R语言好,还有一些争论Python好还是R好的文章.每次看到这样的文章我都会想到李舰和肖凯的<数据科学中的R语言>,书中一直强调,工具不分好坏,重要的是解决问题的思路,就算是简单的excel,也能应付数据分析中的大部分问题.再者Python和R本来就没有什么好对比的,一门是计算机工程语言,一门是统计语言,只有将两者结合起来,才能发挥更大的威力,不是吗,对于数据分析的人来说,难道不是两样都要掌握的吗? rpy2是Python调用R程序的模块,旨…
先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学习算法实现的系列. 本文主要包括: 1.logistics回归 2.python库: numpy matplotlib pandas 使用的数据集:机器学习教材上的西瓜数据集3.0α Idx density ratio_sugar label 1 0.697 0.46 1 2 0.774 0.376…
1.python 中的 range() 函数生成整数序列,常用于 for 循环的迭代. 示例: 2.R 语言中的 range() 函数返回一个数值向量中的最小值和最大中,常用于求极差. 示例: 按语: R 语言中的 range 函数 python 中相当于 min(x), max(x)…
等差数列的通项公式:an = a0 + n*d. 数学上 n 是可以取遍整个整个正整数集的,在现实中,n  是有范围的. 1.R 语言用 seq()  函数产生等差数列: 2.python 中 range() 函数可以生成公差为正数的整数等差数列,numpy 中的 np.linspace() 函数和 np.arrange() 函数则可以生成公差为任意数的等差数列 np.arange 示例: np.linspece() 示例: 按语: seq 函数用 by 控制步长, length 或 lengt…
                                                        先来看看成果图: OK,开始画图: 实验背景声明:在脑影像分析中,我们首先构建脑网络,然后使用双样本t对比两组人的连接差异,然后使用以上的图进行可视化,一般红色连接代表显著升高,绿色代表显著下降.(非必须,根据实际需求设计,如上图中红色代表相应的连接差异与HAMD抑郁量表评分显著相关,绿色表示不相关).这里呢,我们研究了一组病人以及年龄性别匹配的健康被试的fMRI的数据,首先进行fMR…
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blogcont61037.12.0MhmIg https://yq.aliyun.com/articles/61037?spm=5176.100239.bloglist.110.rlSDN9 We are probably living in the most defining period of hu…
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開始我们的讨论.如果如今有100个人的身高数据,并且这100条数据是随机抽取的. 一个常识性的看法是.男性身高满足一定的分布(比如正态分布),女性身高也满足一定的分布.但这两个分布的參数不同. 我们如今不仅不知道男女身高分布的參数,甚至不知道这100条数据哪些是来自男性.哪些是来自女性.这正符合聚类问…
k 近邻法(K-nearest neighbor)是一种基本的分类方法 基本思路: 给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例多数属于某个类别,就把输入实例分为这个类. 算法: 输入:训练数据集 \(T=\{(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\}\) 其中 \(x_{i}\) 是训练集实例的特征向量(features vectors),\(y_{i}\) 是训练集实例的类别,\(i=1,2,…
概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly separable data),线性支持向量机(linear support vector machine),非线性支持向量机(non-linear support vector machine). 简单模型是复杂模型的基础,也是复杂模型的特殊情况.当训练数据线性可分的时候,通过硬间隔最大化(hard…
      [R]如何确定最适合数据集的机器学习算法 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到…
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数…
本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿.未经许可,禁止转载!英文出处:SUNIL RAY.欢迎加入翻译组. 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明.更个性化的技术. 也许我们生活在人类历史上最关键的时期:从使用大型计算机,到个人电脑,再到现在的云计算.关键的不是过去发生了什么,而是将来会有什么发生. 工具和技术的民主化,让像我这样的人对这个时期兴奋不已.计算的蓬勃发展也是一样.如今,作…
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通…
,400],[200,5],[100,77],[40,300]]) shape:显示(行,列)例:shape(group)=(4,2) zeros:列出一个同样格式的空矩阵,例:zeros(group)=([[0,0],[0,0],[0,0],[0,0]]) tile函数位于python模块 numpy.lib.shape_base中,他的功能是反复某个数组.比方tile(A,n),功能是将数组A反复n次,构成一个新的数组 sum(axis=1)矩阵每一行向量相加 3.数据集   4.代码  …
为了鼓励新工具的出现,机器学习和数据分析领域似乎已经成了“开源”的天下.Python 和 R 语言都具有健全的生态系统,其中包括了很多开源工具和资源库,从而能够帮助任何水平层级的数据科学家展示其分析工作. 机器学习和数据分析之间的差异有些难以言明,但二者最主要的不同就在于,比起模型的可解释性,机器学习更加强调预测的准确性:而数据分析则更加看重模型的可解释性以及统计推断.Python ,由于更看重预测结果的准确性,使其成为机器学习的一把利器. R ,作为一种以统计推断为导向的编程语言,在数据分析界…
摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开始学习R语言.总以为有了其他语言的编程背景,学习R语言就是一件很简单的事情,一味地追求速度,但不求甚解,有些同学说2周就能掌握R语言,但掌握的仅仅是R语言的语法,其实这只能算是入门. R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
第5章工欲善其事.必先利其器 代码,是延伸我们思想最好的工具. 第6章基础编程--用别人的包和函数讲述自己的故事 6.1编程环境 1.R语言的三段论 大前提:计算机语言程序=算法+数据结构 小前提:R语言不过是计算机语言的一种 结论:R语言约等于基础编程+数据对象 2.运行机制 RStudio=记事本+R Console 6.2Mini案例 学生文理分科小案例(还有问题) R仅有的命令形式是返回结果的函数和表达式 赋值是一种常见的操作:对象的读取.转换.模型的建立等 赋值给新的对象,往往也意味着…