uva10870 矩阵】的更多相关文章

f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d, 可以用矩阵进行优化,直接构造矩阵,然后快速幂即可. #include<map> #include<set> #include<string> #include<queue> #include<stack> #include<cmath> #include<vector&g…
题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第一个次遇到了矩阵大小不确定的矩阵快速幂,而且在这道题里面第一次明白了如何构造矩阵.算是矩阵快速幂的学习的一个小里程碑吧. f(n) = a1 *f(n - 1) + a2 *f(n - 2) + a3 *f(n - 3) + … + ad* f(n - d),  n > d.求f(n) 代码: //…
题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bits/stdc++.h> #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++) #define ms(a,b) memset((a),(b),sizeof((a))) using namespace std; typedef long long L…
题意: F(n) =  a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, Fn-3, ···, Fn-d] * A(矩阵) = [Fn, Fn-1, Fn-2, ···, Fn-d+1] . Fn  = 第一个矩阵 * A的第一列, 所以A矩阵的第一列为(a1, a2 , ··· ad). Fn = 第一个矩阵  * A的第二列, 所以A矩阵的第二列为(1, 0, 0,…
题意:       给以个递推f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.,给你n,d,a1,a2..ad ,f[1],f[2]..f[d],让你求f[n]%m. 思路:       比较基础的矩阵题目,每次都构造一个d*d的矩阵,然后用快速幂求出来它的n-1次幂,然后在求出乘积就行了,简单构造,没有什么坑点.            #include<stdio.h> #inc…
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可求出下一位f(n)的值并在距震中保存f(n)-----f(n-d+1). 像我这种傻逼看错好几次运算法则的人 = = 第一道矩乘对着老人家模板打得几乎一模一样-----只是觉得他的写法比较优雅= =(虽然我感觉那么多memcpy会不会让常数很大...) CODE: /*===============…
https://vjudge.net/problem/UVA-10870 裸的矩阵快速幂 注意系数矩阵在前面 因为系数矩阵为d*d 方程矩阵为d * 1 放反了就是d * 1 d * d 不符合矩阵乘法 #include<bits/stdc++.h> using namespace std; typedef long long ll; ; struct mat { ll a[N][N]; } x, g; int n, m, d; ll a[N], f[N]; mat operator * (m…
问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j). 接下来s行,每行n个空格隔开的整数,表示矩阵B(i,j). 输出格式 m行,每行n个空格隔开的整数,输出相乘後的矩阵C(i,j)的值. 样例输入 2 3 21 0 -11 1 -30 31 23 1 样例输出 -3 2-8 2提示矩阵C应该是m行n列,其中C(i,j)等于矩阵A第i行行向量与矩…
前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一段代码(下文具体解释代码作用): window.TrackTransform = function () { var svg = document.createElementNS("http://www.w3.org/2000/svg", 'svg'); var xform = svg.c…
CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可以相互转化,且多次地旋转可以归结为一次旋转.这实际上就是著名的轨迹球(arcball)方式操纵模型的理论基础. 本文中都设定float angleDegree为旋转角度,vec3 axis为旋转轴. +BIT祝威+悄悄在此留下版了个权的信息说: 四元数 +BIT祝威+悄悄在此留下版了个权的信息说:…