Error=Bias+Variance】的更多相关文章

首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3.具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环:二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打…
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测,在点$x_0$处的Excepted prediction error: $EPE(x_0)=E\left[\left(y_0-\hat{f}(x_0)\right)^2|x_0\right]\\ \ \ =E\left[\left(y_0-E(y_0)\right)^2|x_0\right]+\l…
bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\(f\)为\(\overline{f}\),我们从数据中学到的\(f\)为\(f^{*}\),实际上\(f^{*}\)是\(\overline{f}\)的一个估计.在统计中,变量\(x\)的均值\(mean\)表示为\(\mu\),方差\(variance\)表示为\(\sigma\),假设我们抽取出…
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右上角的图片,意思就是目标为红点,虽然还在周围,没有太偏,但是太过分散了,不够集中,这就有很高的方差 第一行就是低偏差的结果,第二行就是高偏差的结果 第一列就是低方差的结果,第二列就是低方差的结果 我们可以将问题本身理解成红心,我们拟合的模型就是上面的点 那么就可以知道模型的误差等于偏差加上方差加上不…
参考:https://codesachin.wordpress.com/2015/08/05/on-the-biasvariance-tradeoff-in-machine-learning/ 之前一直没搞明白什么是bias,什么是variance,现在看看这篇博文. 当你的模型太简单,也就是你的train error太大的时候,你的bias就会比较大:当你的模型变得复杂时,bias变小,同时模型变得比较senstive,variance就会变大 但bias变化的幅度更大,所有整体看来,cros…
画learning curves可以用来检查我们的学习算法运行是否正常或者用来改进我们的算法,我们经常使用learning cruves来判断我们的算法是否存在bias problem/variance problem或者两者皆有. learning curves--m(trainning size与error的函数) 上图是Jtrain(θ)与Jcv(θ)与training set size m的关系图,假设我们使用二次项来拟合我们的trainning data. 当trainning dat…
Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regularization,会出现overfit;只有当我们的λ取intermediate值时,才会刚刚好.那么我们怎么自动来选择这个λ的值呢? 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式不带有regulariz…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
A more complex model does not always lead to better performance on testing data. Because error due to both of 'bias' and 'variance'. From training data, we can find \(f^*\), \(f^*\) is an enstimator of \(\hat{f}\) bias (偏差) 和 variance (方差) 的直观表示: 数学公…
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 原文在这里: https://www.cnblogs.com/ooon/p/5711516.html 博主大概翻译自英文: http://scott.fortmann-roe.com/docs/BiasVaria…