lec-6-Actor-Critic Algorithms】的更多相关文章

Actor Critic value-based和policy-based的结合 实例代码 import sys import gym import pylab import numpy as np from keras.layers import Dense from keras.models import Sequential from keras.optimizers import Adam EPISODES = 1000 # A2C(Advantage Actor-Critic) age…
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2019-07-15 22:23:02 Paper: https://arxiv.org/pdf/1801.01290.pdf or Updated Version: https://arxiv.org/pdf/1812.05905.pdf Project: https://sites.google.c…
Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog is copied from: https://github.com/borisbanushev/stockpredictionai In this notebook I will create a complete process for predicting stock price moveme…
一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinforcement learningIndex of /rowan/files/rl ICML Tutorials:http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf NIPS Tutorials:CS 294 Deep Reinforcement Lea…
Awesome TensorFlow  A curated list of awesome TensorFlow experiments, libraries, and projects. Inspired by awesome-machine-learning. What is TensorFlow? TensorFlow is an open source software library for numerical computation using data flow graphs. I…
IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源:互联网 发布:域名隐私保护 免费 编辑:IT博客网 时间:2019/08/26 23:49 1 前言 如果大家已经对DQN有所了解,那么大家就会知道,DeepMind测试的40多款游戏中,有那么几款游戏无论怎么训练,结果都是0的游戏,也就是DQN完全无效的游戏,有什么游戏呢?  比如上图这款游戏,叫做Mo…
循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py. 自然语言处理(natural language processing, NLP)应用网络模型.与前馈神经网络(feed-forward neural network,FNN)不同,循环网络引入定性循环,信号在神经元传递不消失继续存活.传统神经网络层间全连接,层…
课件:Lecture 1: Introduction to Reinforcement Learning 视频:David Silver深度强化学习第1课 - 简介 (中文字幕) 强化学习的特征 作为机器学习的一个分支,强化学习主要的特征为: 无监督,仅有奖励信号: 反馈有延迟,不是瞬时的; 时间是重要的(由于是时序数据,不是独立同分布的); Agent的动作会影响后续得到的数据; 强化学习问题 奖励(Rewards) 奖励 \(R_t\) 是一个标量的反馈信号,表示Agent在 \(t\) 时…
完整代码:https://github.com/zle1992/Reinforcement_Learning_Game Policy Gradient  可以直接预测出动作,也可以预测连续动作,但是无法单步更新. QLearning  先预测出Q值,根据Q值选动作,无法预测连续动作.或者动作种类多的情况,但是可以单步更新. 一句话概括 Actor Critic 方法: 结合了 Policy Gradient (Actor) 和 Function Approximation (Critic) 的方…
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments 2017-10-25  16:38:23   [Project Page]https://blog.openai.com/learning-to-cooperate-compete-and-communicate/    4. Method 4.1 Multi-Agent Actor Critic 该网络框架有如下假设条件:  (1) the learn…