前提介绍 ShardingSphere介绍 ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC.Sharding-Proxy和Sharding-Sidecar(计划中)这3款相互独立的产品组成. 他们均提供标准化的数据分片.分布式事务和数据库治理功能,可适用于如Java同构.异构语言.云原生等各种多样化的应用场景. shardingJDBC使用的范围 适用于任何基于JDBC的ORM框架,如:JPA, Hibernate, Mybatis…
一.序言 在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量.当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术. 本文将基于SpringBoot+MybatisPlus+Sharding-JDBC+Mysql实现企业级分库分表. 1.组件及版本选择 SpringBoot 2.6.x MybatisPlus 3.5.0 Sharding-JDBC 4.1.1 Mysql 5.7.35 2.预期目标 使用上述组件实现分库分表,简化起…
为解决关系型数据库面对海量数据由于数据量过大而导致的性能问题时,将数据进行分片是行之有效的解决方案,而将集中于单一节点的数据拆分并分别存储到多个数据库或表,称为分库分表. 分库可以有效分散高并发量,分表虽然无法缓解并发量,但仅跨表仍然可以使用数据库原生的ACID事务.而一旦跨库,涉及到事务的问题就会变得无比复杂. 1.使用 pom.xml添加依赖: <dependency> <groupId>io.shardingsphere</groupId> <artifac…
  Sharding (转)大型互联网站解决海量数据的常见策略 - - ITeye技术网站 阿里巴巴Cobar架构设计与实践 - 机械机电 - 道客巴巴 阿里分布式数据库服务原理与实践:沈询_文档下载_IT168文库 阿里分布式数据库实践.pdf_微盘下载 阿里开源Mysql分布式中间件:Cobar - 沙漠绿树 - ITeye技术网站 阿里云产品博客 » SQL解析过程详解 阿里云分布式RDS平台——柳彦召:阿里云RDS高级开发工程师_文档下载_IT168文库 笔者带你剖析淘宝TDDL——Ma…
1.创建两个库,每个库创建两个分表t_order_1,t_order_2 DROP TABLE IF EXISTS `t_order_1`; CREATE TABLE `t_order_1` ( `id` int(10) NOT NULL AUTO_INCREMENT, `amount` int(255) NOT NULL, `name` varchar(10) NOT NULL, `user_id` int(10) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=I…
结合上一篇docker部署的mysql主从, 本篇主要讲解SpringBoot项目结合Sharding-JDBC如何实现分库分表.读写分离. 一.Sharding-JDBC介绍 1.这里引用官网上的介绍:   定位为轻量级Java框架,在Java的JDBC层提供的额外服务. 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架.   适用于任何基于JDBC的ORM框架,如:JPA, Hibernate, Mybatis…
选择开源核心组件的一个非常重要的考虑通常是社区活跃性,一旦项目团队无法进行自己后续维护和扩展的情况下更是如此. 至于为什么选择sharding-jdbc而不是Mycat,可以参考知乎讨论帖子https://www.zhihu.com/question/64709787. 还可以参考https://blog.csdn.net/u013898617/article/details/79615427. 关于分库分表和读写分离.主从 一般来说,需要分库分表的系统是流量比较大的,而且比较容易出现峰值的比如…
携程酒店订单Elastic Search实战:http://www.lvesu.com/blog/main/cms-610.html 为什么分库分表后不建议跨分片查询:https://www.jianshu.com/p/1a0c6eda6f63 分库分表技术演进(阿里怎么分):https://mp.weixin.qq.com/s/3ZxGq9ZpgdjQFeD2BIJ1MA 1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8…
1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8亿,微信10亿.CITIC对公140万,对私8700万. 订单表:美团每天几千万,淘宝历史订单百亿.千亿. 交易流水表 2.选择方案 (1)NoSQL/NewSQL(不选择) 选择RDBMS,不选择NoSQL/NewSQL,主要是因为NoSQL/NewSQL可靠性无法与RDBMS相提并论.RDBMS有以下几个优点: RDBMS生态完善: RDBMS绝对稳定: RDBMS的事务…
每个优秀的程序员和架构师都应该掌握分库分表,这是我的观点. 移动互联网时代,海量的用户每天产生海量的数量,比如: 用户表 订单表 交易流水表 以支付宝用户为例,8亿:微信用户更是10亿.订单表更夸张,比如美团外卖,每天都是几千万的订单.淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的.事实上MySQL单表可以存储10亿级数据,只是这时候性能比较差,业界公认MySQL单表容量在1KW以下是最佳状态,因为这时它的BTREE索引树高在3~5之间. 既然一张表无法搞定,那…