Leetcode 172.阶乘后的零】的更多相关文章

172. 阶乘后的零 172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. LeetCode172. Factorial Trailing Zeroes 示例 1: 输入: 3 输出: 0 解释: 3! = 6,尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120,尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n). Java 实现 递归 class Solution { publi…
172. 阶乘后的零 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n) . PS: 首先题目的意思是末尾有几个0 比如6! = [1* 2* 3* 4* 5* 6] 其中只有25末尾才有0,所以就可以抛去其他数据 专门看2 5 以及其倍数 毕竟 4 * 25末尾也是0 比如10! =…
阶乘后的零 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零. class Solution { public static int trailingZeroes(int n) { int sum=0; while(n>0){ sum+=n/5; n/=5; } return sum; } public static void main…
开源地址:点击该链接 题目描述 https://leetcode-cn.com/problems/factorial-trailing-zeroes 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零. 说明: 你算法的时间复杂度应为O(logn). 解题思路 最直接的解法就是先求出 n! 等于多少 然后计算尾数中零的数量,该方法的复杂度…
https://leetcode-cn.com/problems/factorial-trailing-zeroes/ 172. 阶乘后的零 这题要完成其实要知道一个很巧妙的思想,就是阶乘里面,后面的几个零是由什么来决定的.只有知道了这个,才能够在足够小的时间复杂度中得到答案.其实乘法里面,末尾有0意味着因子中肯定有10,而10的质因子,就是5 和 2,所以,我们要看末尾有没有5,为啥直接看阶乘中的数字的包含的5的质因子的总数就可以了?不用看2的么?主要是5比2大,如果有5的质因数,那么肯定比如…
题目描述: 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例1: 输入: 输出: 解释: ! = , 尾数中没有零. 示例2: 输入: 输出: 解释: ! = , 尾数中有 个零. 说明: 你的解法应该为 O(logN) 时间复杂度. 题目分析: 要求末尾有多少个零,则该数应为x*10k 的形式等于x*(2k *5k) 也就是求该数分解质因子后有几个5就行,:如1*2*3*4*5=1*2*3*2*2*5(里面有一个5)所以结果为1个0 详见代码 解答代码: class Solution…
每天 3 分钟,走上算法的逆袭之路. 前文合集 每日一道 LeetCode 前文合集 代码仓库 GitHub: https://github.com/meteor1993/LeetCode Gitee: https://gitee.com/inwsy/LeetCode 题目:阶乘后的零 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零.…
给定一个整数 n, 返回 n! 结果中尾数为零的数量. 示例 : 输入: 输出: 解释: ! = , 尾数中没有零. 示例 : 输入: 输出: 解释: ! = , 尾数中有个零. 说明:算法的时间复杂度应为 O(log n). 理解:最简单粗暴的方法就是先乘完再说,然后再数尾数有几个零? 发现规律:在使用暴力破解法的过程中会发现,什么时候会出现零呢?这9个数字中只有2和5相乘才会有0的出现,或者他们的倍数.因此,问题变转变成求这个阶乘数中能匹配多少对2和5的问题. 例如: ! = [*(*)**…
给定一个整数 n,返回 n! 结果尾数中零的数量.注意: 你的解决方案应为对数时间复杂度. 详见:https://leetcode.com/problems/factorial-trailing-zeroes/description/ Java实现: N的阶乘可以分解为: 2的X次方,3的Y次方,4的K次方,5次Z方,.....的乘积.由于10 = 2 * 5,所以M只能和X和Z有关,每一对2和5相乘就可以得到一个10,于是M = MIN(X,Z),不难看出X大于Z,因为被2整除的频率比被5整除…
给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n) . class Solution(object): def trailingZeroes(self, n): """ :type n: int :rtype: int """ count…