Expectation-Maximization(EM) 算法】的更多相关文章

原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法.往往用在存在隐藏变量的问题上.我这里特意用"框架"来称呼它,是因为EM算法不像一些常见的机器学习算法例如logistic regression, decision tree,只要把数据的输入输出格式固定了,直接调用工具包就可以使用.可以概括为一个两步骤的框架: E-step:估计隐藏变量的概…
EM(Expectation Maximization)算法  参考资料: [1]. 从最大似然到EM算法浅解 [2]. 简单的EM算法例子 [3]. EM算法)The EM Algorithm(详尽的理论推导过程,源自斯坦福大学的教程) [4]. 混合高斯模型(Mixtures of Gaussians)和EM算法…
1 极大似然估计     假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分布     欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系.在…
Jensen不等式 Jensen不等式给出了积分的凸函数值必定大于凸函数(convex)的积分值的定理.在凸函数曲线上的任意两点间连接一条线段,那么线段会位于曲线之上,这就是将Jensen不等式应用到两个点的情况,如图(1)所示\((t\in[0,1])\).我们从概率论的角度来描述Jensen不等式:假设\(f(x)\)为关于随机变量\(x\)的凸函数\(f'(x)\geq 0\),则有\(f\left(E(x)\right)\leq E\left(f(x)\right)\).反之,如果\(f…
EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分布 欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系.在实…
目录 引言 经典示例 EM算法 GMM 推导 参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster 等总结提出. 说EM算法神奇而强大是因为它可以解决含有隐变量的概率模型问题. EM算法是一个简单而又复杂的算法. 说它简单是因为其操作过程就两步, E(expectation)步: 求期望; M(maximization)步, 求极大. 说它复杂,是因为刚刚学习的时候,你会发现EM算法并不像之前的…
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域. 可以有一些比较形象的比喻说法把这个算法讲清楚.比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,…
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值:另外一步是最大化(M),也就是最大化在 E 步上找到的最大…
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使用EM算法求解三硬币模型 为什么需要EM算法 数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断.所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量. 参数估计是指这样一类问题——总体所服从的分布类型已知,但某些…
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法.  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( complete-data…