spark再总结】的更多相关文章

1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark与Hadoop的对比(Spark的优势) 1.Spark的中间数据放到内存…
java安装 首先需要上oracle的网站下载 在lib目录下建立一个jvm文件夹 sudo mkdir /usr/lib/jvm 然后解压文件到这个文件夹 sudo tar zxvf jdk-8u40-linux-i586.tar.gz -C /usr/lib/jvm 进入解压文件夹 cd /usr/lib/jvm 然后为了方便改个名字 sudo mv jdk1.8.0_40 java 打开配置文件 sudo gedit ~/.bashrc 加入以下设置 export JAVA_HOME=/u…
使用registerTempTable注册表是一个临时表,生命周期只在所定义的sqlContext或hiveContext实例之中.换而言之,在一个sqlontext(或hiveContext)中registerTempTable的表不能在另一个sqlContext(或hiveContext)中使用. 而saveAsTable则是永久的,只要连接存在,spark再启的时候,这个表还是在的. 官网上的描述: Unlike theregisterTempTable command, saveAsTa…
依据Spark 1.4.1源码 SparkContext的broadcast方法 注释 可以用SparkContext将一个变量广播到所有的executor上,使得所有executor都能获取这个变量代表的数据. SparkContext对于broadcast方法的注释为: /** * Broadcast a read-only variable to the cluster, returning a * [[org.apache.spark.broadcast.Broadcast]] obje…
本課主題 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 引言 在历史的发展中,为什么 Spark 最终还是选择放弃了 HashShuffle 而使用了 Sorted-Based Shuffle,而且作为后起之秀的 Tungsten-based Shuffle 它到底在什么样的背景下产生的.Tungsten-Sort Shuffle 已经并入了 Sorte…
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write…
性能调优相关的原理讲解.经验总结: 掌握一整套Spark企业级性能调优解决方案:而不只是简单的一些性能调优技巧. 针对写好的spark作业,实施一整套数据倾斜解决方案:实际经验中积累的数据倾斜现象的表现,以及处理后的效果总结. 调优前首先要对spark的作业流程清楚: Driver到Executor的结构: Master: Driver |-- Worker: Executor |-- job |-- stage |-- Task Task 一个Stage内,最终的RDD有多少个partitio…
本课主题 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 引言 在历史的发展中,为什么 Spark 最终还是选择放弃了 HashShuffle 而使用了 Sorted-Based Shuffle,而且作为后起之秀的 Tungsten-based Shuffle 它到底在什么样的背景下产生的.Tungsten-Sort Shuffle 已经并入了 Sorte…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/9JKSqMiQuBE/优酷:http://v.youku.com/v_show/id…
Java领域的IM解决方案 Java领域的即时通信的解决方案可以考虑openfire+spark+smack. Openfire是基于Jabber协议(XMPP)实现的即时通信服务器端,最新版本是3.8.1 可以到http://www.igniterealtime.org/downloads/index.jsp下载(分为windows和linux版本) 可以到http://www.igniterealtime.org/downloads/source.jsp下载源码,方便二次开发插件. Spar…
Spark Streaming揭秘 Day7 再探Job Scheduler 今天,我们对Job Scheduler再进一步深入一下,对一些更加细节的源码进行分析. Job Scheduler启动 在Job Scheduler的启动代码中,我们发现其采用了新建Thread的方式来启动代码 在更早的Spark版本中,并没有采用这种方式,为啥要这么多做? 从注释中,很明确的指出了,这么做的原因主要是对于变量的隔离 通过启动线程,可以使运行和用户处理线程没有关系,从而避免用户线程中变量设置的干扰 从变…
最近用spark在集群上验证一个算法的问题,数据量大概是一天P级的,使用hiveContext查询之后再调用算法进行读取效果很慢,大概需要二十多个小时,一个查询将近半个小时,代码大概如下: try: sql = """ select ltescrsrq, mr_ltencrsrq1, mr_ltencrsrq2, mr_ltencrsrq3, ltescrsrp, mr_ltencrsrp1, mr_ltencrsrp2, mr_ltencrsrp3, mr_ltesctad…
在Hadoop集群的基础上搭建Spark 一.环境准备 在搭建Spark环境之前必须搭建Hadoop平台,尽管以前的一些博客上说在单机的环境下使用本地FS不用搭建Hadoop集群,可是在新版spark的安装之中,我们必须确定SPARK_DIST_CLASSPATH这个环境变量的值,而这个值恰恰就是Hadoop目录中的classpath,因为这个原因,我在搭建的过程中吃了很多的苦,希望大家引以为戒.现在让我们准备一下安装spark的实验环境: Ubuntu Kylin16.04.4 安装java环…
对于Spark的初学者,往往会有一个疑问:Spark(如SparkRDD.SparkSQL)在处理数据的时候,会将数据都加载到内存再做处理吗? 很显然,答案是否定的! 对该问题产生疑问的根源还是对Spark计算模型理解不透彻. 对于Spark RDD,它是一个分布式的弹性数据集,不真正存储数据.如果你没有在代码中调用persist或者cache算子,Spark是不会真正将数据都放到内存里的. 此外,还要考虑persist/cache的缓存级别,以及对什么进行缓存(比如是对整张表生成的DataSe…
package cn.spark.study.core.mycode_dataFrame; import java.sql.DriverManager;import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map; import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD…
进入我这篇博客的博友们,相信你们具备有一定的spark学习基础和实践了. 先给大家来梳理下.spark的运行模式和常用的standalone.yarn部署.这里不多赘述,自行点击去扩展. 1.Spark运行模式概述 2.Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master.slave1和slave2) 3.Spark standalone简介与运行wordcount(master.slave1和slave2) 4.Spark on…
当某个task完成后,某个shuffle Stage X可能已完成,那么就可能会一些仅依赖Stage X的Stage现在可以执行了,所以要有响应task完成的状态更新流程. =======================DAG task完成后的更新流程=================== ->CoarseGrainedSchedulerBackend::receiveWithLogging  --调度器的事件接收器 ->case StatusUpdate(executorId, taskId…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker项目,有兴趣的可以看一下,此项目用到了不少很tricky的技巧提升性能,单纯只想看懂源代码可以参考wordmaker作者的一份简单版代码. 这个项目统计语料库的结果和执行速度都还不错,但缺点也很明显,只能处理GBK编码的文档,而且不能分布式运行,刚好最近在接触spark,所以用python实现了里面…
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Spark,在执行以下步骤之前,请先确保已经安装Hadoop集群,Hive,MySQL,JDK,Scala,具体安装步骤不再赘述. 背景 Hive默认使用MapReduce作为执行引擎,即Hive on mr.实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hi…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
在即时通信这个领域目前只找到一个XMPP协议,在其协议基础上还是有许多成熟的产品,而且是开源的.所以还是想在这个领域多多了解一下. XMPP协议:具体的概念我就不写了,毕竟这东西网上到处是.简单的说就是基于XML的一种协议.其解决了什么问题呢?就是给即时通讯制定了标准,大家只要遵守标准就可以完成即时通信的功能.有了标准的好处就是可以有各种不同的实现,大家在这个标准上发展自己的特长.而且还给即时通信提供了互联互通的基础.XMPP协议据网上说还是比较优秀的,表现就是google等大公司都在自己的即时…
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala语法. 1)  aggregate(zeroValue)(seqOp,combOp)  该函数的功能和reduce函数一样,也是对数据进行聚合操作,不过aggregate可以返回和原RDD不同的数据类型,使用时候还要提供初始值. 我们来看看下面的用法,代码如下: val rddInt: RDD[In…
上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对mapreduce计算框架的改进,mapreduce计算框架是基于键值对也就是map的形式,之所以使用键值对是人们发现世界上大部分计算都可以使用map这样的简单计算模型进行计算.但是Spark里的计算模型却是数组形式,RDD如何处理Map的数据格式了?本篇文章就主要讲解RDD是如何处理Map的数据格式.…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
PairRDDFunctions类提供了以下两个join接口,只提供一个参数,不指定分区函数时默认使用HashPartitioner;提供numPartitions参数时,其内部的分区函数是HashPartitioner(numPartitions) def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { //这里的defaultPartitioner 就是HashPartitioner,如果指定了HashPart…
前言:本文是我学习Spark 源码与内部原理用,同时也希望能给新手一些帮助,入道不深,如有遗漏或错误的,请在原文评论或者发送至我的邮箱 tongzhenguotongzhenguo@gmail.com 摘要: 1.作业调度核心--DAGScheduler 2.DAGScheduler类说明 2.1DAGScheduler 2.2ActiveJob 2.3Stage 2.4Task 3.工作流程 3.1划分Stage 3.2生成Job,提交Stage 3.3任务集的提交 3.4任务作业完成状态的监…
Transformation和action详解 视频教程: 1.优酷 2.YouTube 什么是算子 算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作. 算子分类: 具体: 1.Value数据类型的Transformation算子,这种变换并不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transfromation算子,这种变换并不触发提交作业,针对处理的数据项是Key-Value型的数据对. 3.Action算子,这类算子会触发SparkC…