图的深度优先遍历&广度优先遍历】的更多相关文章

学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #include<iostream> using namespace std; //构造一个循环队列来存放广度优先算法的下标 #define ADD 5; using namespace std; class CirQueue { private: int * base; int front,rear,siz…
遍历 图的遍历,所谓遍历,即是对结点的访问.一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: 深度优先遍历 广度优先遍历 深度优先 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点.总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点. 我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所…
如果看完本篇博客任有不明白的地方,可以去看一下<大话数据结构>的7.4以及7.5,讲得比较易懂,不过是用C实现 下面内容来自segmentfault 存储结构 要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值.常用的图的存储结构主要有以下二种: 邻接矩阵 邻接表 邻接矩阵 我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组…
1.前置条件 我们提前构建一棵树,类型为 Tree ,其节点类型为 Note.这里我们不进行过多的实现,简单描述下 Note 的结构: class Node{ constructor(data){ this.data = data; this.children = []; // 存放所以子节点,如果是二叉树,可以分为两个属性,left和right分别存储左右子节点 } } class Tree{ constructor(){ this.root = new Node('root'); // 树结…
在介绍 python 实现图的深度优先和广度优先搜索前,我们先来了解下什么是"图". 1 一些定义 顶点 顶点(也称为"节点")是图的基本部分.它可以有一个名称,我们将称为"键". 边 边(也称为"弧")是图的另一个基本部分.边连接两个顶点,以表明它们之间存在关系. 权重 边可以被加权以示出从一个顶点到另一个顶点的成本.例如,在将一个城市连接到另一个城市的道路的图表中,边上的权重可以表示两个城市之间的距离. 利用这些定义,我们…
主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建立与实现; import java.util.*; public class MGraph { final int MAXVEX = 100; final int INFINITY = 65535; int[] vexs = new int[MAXVEX]; //顶点表 int[][] arc =…
1.什么是图的搜索? 指从一个指定顶点可以到达哪些顶点   2.无向完全图和有向完全图 将具有n(n-1)/2条边的无向图称为无向完全图(完全图就是任意两个顶点都存在边). 将具有n(n-1)条边的有向图称为有向完全图. 栗子1: 具有6个顶点的无向图,当有多少条边的时候,能确保是一个连通图? 6个顶点组成的完全图,需要6(6-1)/2=10条,则需要的边数是10+1=11条 栗子2: 要连通具有n个顶点的有向图至少需要n条边   3.顶点的度 对于无向图,顶点的度表示以该顶点作为一个端点的边的…
二叉树的前序遍历,中序遍历,后序遍历 树的遍历: 先根遍历--访问根结点,按照从左至右顺序先根遍历根结点的每一颗子树. 后根遍历--按照从左至右顺序后根遍历根结点的每一颗子树,访问根结点. 先根:ABEFCDG 后根:EFBCGDA 森林的遍历: 前序遍历--分树前根遍历 中序遍历--分树后根遍历 深度优先遍历:相似于树的前序遍历,首先访问出发点v,并将其标记为已访问过:然后依次从v出发搜索v的每个邻接点w.若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的…
1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public static TreeNode root; //建立二叉树内部类 class TreeNode{ public Object data; //携带变量 public TreeNode lchild,rchild; //左右孩子 public TreeNode() { data = null; lchild…
一.二叉树demo var tree = { value: '一', left: { value: '二', left: { value: '四', right: { value: '六' } } }, right: { value: '三', left: { value: '五', left: { value: '七' }, right: { value: '八' } }, } } var traverse = function(node) { if(!node) { throw new Er…