MapReduce Kmeans算法含测试数据】的更多相关文章

使用时,需要修改K值,args值 运行流程: 先初始化中心点->map中和距离最近的中心点生成一对传入reduce->reduce中把相同key值的存到一起->更新中心点,计算和上一次的结果偏差是否达到要求,没有的话继续迭代 因为一般来说都是读取文件操作,所以使用String操作更方便 package kmeans; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; i…
最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063 但注释太少了,而且参数太多,如果新手学习的话不太好理解.所以自己按照个人的理解写了一个简单的例子并添加了详细的注释. 大致的步骤是: 1,Map每读取一条数据就与中心做对比,求出该条记录对应的中心,然后以中心的ID为Key,该条数据为value将数据输出. 2,利用reduce的归并功能将相同的Key归并到一起,集中与该…
写mapreduce程序实现kmeans算法.我们的想法可能是 1. 次迭代后的质心 2. map里.计算每一个质心与样本之间的距离,得到与样本距离最短的质心,以这个质心作为key,样本作为value,输出 3. reduce里,输入的key是质心,value是其它的样本,这时又一次计算聚类中心,将聚类中心put到一个所有变量t中. 4. 在main里比較前一次的质心和本次的质心是否发生变化,假设变化,则继续迭代,否则退出. 本文的思路基本上是依照上面的步骤来做的,仅仅只是有几个问题须要解决 1…
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
本博文主要内容有   1.kmeans算法简介 2.kmeans执行过程  3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解      5.mahout的kmeans算法实现原理      6.kmeans算法运行时参数介绍  7.使用mahout自带的fpg算法来对我们的测数据retail.dat进行kmeans算法(但是0.9及其以后版本照样可以用,但是格式要注意)  8.使用开始使用mahout自带的kmeans算法来对我们的测数据retail.dat进行kmea…
用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~ 并行化思路: 使用主从模式.由一个节点充当主节点负责数据的划分与分配,其他节点完成本地数据的计算,并将结果返回给主节点.大致过程如下: 1.进程0为主节点,先从文件中读取数据集,然后将数据集划分并传给其他进程: 2.进程0选择每个聚类的中心点,并发送给其他进程: 3.其他进程计算数据块中每个点到中心点的距离,然后标出每个点所属的聚类,并计算每个聚类所有点到其中心点的距离之和,最后将这…
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准.以决定预期结果,…
语音信号的数字处理课程作业——矢量量化.这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单.矢量是二维的,可以在平面上清楚的表示出来. 1. 算法描述 本次实验选择了K-means算法对数据进行矢量量化.算法主要包括以下几个步骤 初始化:载入训练数据,确定初始码本中心(4个): 最近邻分类:对训练数据计算距离(此处采用欧式距离),按照距离最小分类: 码本更新:重新生成包腔对应的质心: 重复分类和码本更新步骤,知道达到最大迭代次数或满足一定…
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必…