tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编写程序时,首先构筑整个系统的graph,代码并不会直接生效,这一点和python的其他数值计算库(如Numpy等)不同,graph为静态的,在实际的运行时,启动一个session,程序才会真正的运行.这样做的好处就是:避免反复地切换底层程序实际运行的上下文,tensorflow帮你优化整个系统的代码…
参考 1. tensorflow中 tf.reduce_mean函数: 完…
tf.placeholder(dtype, shape=None, name=None) 此函数用于定义过程,在执行的时候再赋具体的值 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以多维,比如:[None,3],表示列是3,行不一定 name:名称. 返回: Tensor类型 赋值一般用sess.run(feed_dict = {x:xs, y_:ys}),其中x,y_是用placeholder…
函数形式: tf.placeholder(     dtype,     shape=None,     name=None ) 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以是多维(比如[2,3], [None, 3]表示列是3,行不定) name:名称,可以理解为变量的名字(自变量) import tensorflow as tf import numpy as np input1 = tf…
tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值. reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None) 第一个参数input_tensor: 输入的待降维的tensor; 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值; 第三个参数keep_d…
转载  https://blog.csdn.net/duanlianvip/article/details/98626111 tf.reset_default_graph函数用于清除默认图形堆栈并重置全局默认图形. 1.无tf.reset_default_graph import tensorflow as tf # 执行完 with 里边的语句之后,这个 conv1/ 和 conv2/ 空间还是在内存中的.这时候如果再次执行此代码,就会再生成其他命名空间 with tf.name_scope(…
tf.argmax(input, axis=None, name=None, dimension=None) 此函数是对矩阵按行或列计算最大值   参数 input:输入Tensor axis:0表示按列,1表示按行 name:名称 dimension:和axis功能一样,默认axis取值优先.新加的字段 返回:Tensor  一般是行或列的最大值下标向量   例:…
将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_size_splits: 切分的个数 axis: 沿着哪个维度切分…
一.函数意义: 1.tf.Variable() 变量 W = tf.Variable(<initial-value>, name=<optional-name>) 用于生成一个初始值为initial-value的变量.必须指定初始化值 x = tf.Variable() x.initializer # 初始化单个变量 x.value() # 读取op x.assign() # 写入op x.assign_add() # 更多op x.eval() # 输出变量内容 2.tf.get…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…