Spark架构角色及基本运行流程】的更多相关文章

1. 集群角色 Application:基于spark的用户程序,包含了一个Driver program 和集群中多个Executor Driver Program:运行application的main()函数并自动创建SparkContext.Driver program通过一个SparkContext对象来访问Spark,通常用SparkContext代表Driver. SparkContext: Spark的主要入口点,代表对计算集群的一个连接,是整个应用的上下文,负责与ClusterMa…
前言 上文已经介绍了与Spark 息息相关的MapReduce计算模型,那么相对的Spark的优势在哪,有哪些适合大数据的生态呢? Spark对比MapReduce,Hive引擎,Storm流式计算引擎 1.如果数据超过1T了基本就不能用spark了,还是会选择MapReduce,MapReduce利用磁盘的高I/O操作实现并行计算确实在处理海量数据是无法取代的,但它在迭代计算中性能不足.(如果数据过大,OOM内存溢出等等,spark的程序就无法运行了,直接就会报错挂掉了,这个很坑爹是吧,虽然M…
MyBatis 是轻量级的 Java 持久层中间件,完全基于 JDBC 实现持久化的数据访问,支持以 xml 和注解的形式进行配置,能灵活.简单地进行 SQL 映射,也提供了比 JDBC 更丰富的结果集,应用程序可以从中选择对自己的数据更友好的结果集.本文将从一个简单的快速案例出发,为读者剖析 MyBatis 的整体架构与运行流程.本次分析中涉及到的代码和数据库表可以从 GitHub 上下载:mybatis-demo . 1.一个简单的 MyBatis 快速案例 MyBatis官网 给出了一个…
一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterManager通信,进行资源的申请,任务的分配和监控等.程序执行完毕后关闭SparkContext (3)Executor:某个Application运行在Worker节点上的一个进程,该进程负责运行某些task,并且负责将数据存在内存或者磁盘上.在Spark on Yarn模式下,其进程名称为 Coar…
本系列主要描述Spark Streaming的运行流程,然后对每个流程的源码分别进行解析 之前总听同事说Spark源码有多么棒,咱也不知道,就是疯狂点头.今天也来撸一下Spark源码. 对Spark的使用也就是Spark Streaming使用的多一点,所以就拿Spark Streaming开涮. 源码中的一些类 这里先列举一些源码中的类,大家先预热一下. StreamingContext:这是Spark Streaming程序的入口,提供了运行时上下文环境 DStream:是RDD在Spark…
Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterManager通信,进行资源的申请,任务的分配和监控等.程序执行完毕后关闭SparkContext (3)Executor:某个Application运行在Worker节点上的一个进程,该进程负责运行某些task,并且负责将数据存在内存或者磁盘上.在Spark on Yarn模式下,其进程名称为 Coarse…
一.分布式任务调度的背景 无论是互联网应用或者企业级应用,都充斥着大量的批处理任务.我们常常需要一些任务调度系统来帮助解决问题.随着微服务化架构的逐步演进,单体架构逐渐演变为分布式.微服务架构.在此背景下,很多原先的任务调度平台已经不能满足业务系统的需求,于是出现了一些基于分布式的任务调度平台. 1.1 分布式任务调度的演进 在实际业务开发过程中,很多时候我们无可避免地需要使用一些定时任务来解决问题.通常我们会有多种解决方案:使用 Crontab 或 SpringCron (当然这种情况可能机器…
不多说,直接上干货! Spark基本运行流程 Application program的组成 Job : 包含多个Task 组成的并行计算,跟Spark action对应. Stage : Job 的调度单位,对应于TaskSet . TaskSet :一组关联的.相互之间没有shuffle 依赖关系的任务组成的任务集. Task : 被送到某个executor 上的工作单元 Spark 运行流程概述  Spark具体流程(以standalone模式为例)…
第2章 Spark角色介绍及运行模式 2.1 集群角色 从物理部署层面上来看,Spark主要分为两种类型的节点,Master节点和Worker节点:Master节点主要运行集群管理器的中心化部分,所承载的作用是分配Application到Worker节点,维护Worker节点,Driver,Application的状态.Worker节点负责具体的业务运行. 从Spark程序运行的层面来看,Spark主要分为驱动器节点和执行器节点. 2.2 运行模式 1)Local模式: Local模式就是运行在…
0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而产生任务(有多少个MapTask以及多少个ReduceTask),然后根据各个nodemanage节点资源情况进行任务划分.最后得到结果存入hdfs中或者是数据库中 注意:由图可知,map任务和reduce任务在不同的节点上,那么reduce是如何获取经过map处理的数据呢?======>shuff…