Python深度学习】的更多相关文章

可以画画啊!可以画画啊!可以画画啊! 对,有趣的事情需要讲三遍. 事情是这样的,通过python的深度学习算法包去训练计算机模仿世界名画的风格,然后应用到另一幅画中,不多说直接上图! 这个是世界名画"毕加索的自画像"(我也不懂什么是世界名画,但是我会google呀哈哈),以这张图片为模板,让计算机去学习这张图片的风格(至于怎么学习请参照这篇国外大牛的论文http://arxiv.org/abs/1508.06576)应用到自己的这张图片上. 结果就变成下面这个样子了 咦,吓死宝宝了,不…
大家好,我禅师的助理兼人工智能排版住手助手条子.可能非常多人都不知道我.由于我真的难得露面一次,天天给禅师做底层工作. wx_fmt=jpeg" alt="640? wx_fmt=jpeg" /> 今天条子最终也熬到这一天! 最终也有机会来为大家写文章了! 激动的我啊.都忘了9月17号中午和禅师在我厂门口兰州料理吃饭.禅师要了一碗牛拉+一瓶可乐+一碟凉菜,总共30元.让我结账至今还没还钱的事儿了.真的,激动的我一点儿都想不起来了. 国庆长假就要開始了,作为人工智能头条的…
学习深度学习时,我想<Python深度学习>应该是大多数机器学习爱好者必读的书.书最大的优点是框架性,能提供一个"整体视角",在脑中建立一个完整的地图,知道哪些常用哪些不常用,再据此针对性地查漏补缺就比较方便了,而如果直接查文档面对海量的API往往会无所适从. 全书分为两大部分,第一部分是对于深度学习的全局介绍,包括其与人工智能.机器学习的关系,一些相关的基本概念如张量(tensor).梯度下降.神经网络.反向传播算法等等.其中第三章举了三个简单的例子,分别对应的任务是二分…
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs一起工作, 并且在符号微分方面表现优秀. 文档: http://deeplearning.net/software/theano/ 概述: Theano是数值计算的主力, 它支持了许多我们列表当中的其他的深度学习框架. Theano由 frederic bastien 创建, 这是蒙特利尔大学机器学…
基于python深度学习的apk风险预测脚本 为了有效判断安卓apk有无恶意操作,利用python脚本,通过解包apk文件,对其中xml文件进行特征提取,通过机器学习构建模型,预测位置的apk包是否有风险. 一.APK拆包 一般的方法有两种 由google开发的apktool. python的androguard包. 网上关于apktool的教程比较多,但是笔者在尝试使用后发现, apktool是基于java开发的,而机器学习由python控制,虽然可以利用python控制apktool,但有点…
Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版+英文版+源代码,这本书让你通过直观的解释和实例学习深度学习,不得不看. 下载地址:https://www.fageka.com/i/7Z3LFji1434…
  大数据文摘作品,转载要求见文末 编译团队|姚佳灵 裴迅 简介 ▼ 深度学习,是人工智能领域的一个突出的话题,被众人关注已经有相当长的一段时间了.它备受关注是因为在计算机视觉(Computer Vision)和游戏(Alpha GO)等领域有超越人类能力的突破 .自上一次调查(查看调查:https://www.analyticsvidhya.com/blog/2014/06/deep-learning-attention/)以来,对于深度学习的关注又出现了大幅增加的趋势. 下图是谷歌趋势向我们…
之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用python语言的方法. 为了能在java应用中使用python语言训练的算法模型,我在网上找了很久.我大概找到了三种方法 1. java代码可以直接调用python代码,只需要下载相应的jar包就行.这种方式我没有尝试,只是觉得这样做使得java应用太过于依赖python的环境了.还有网上也有将py…
标量(0D 张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量.零维张量.0D 张量).在Numpy 中,一个float32 或float64 的数字就是一个标量张量(或标量数组).你可以用ndim 属性 来查看一个Numpy 张量的轴的个数.标量张量有0 个轴(ndim == 0).张量轴的个数也叫作 阶(rank).下面是一个Numpy 标量. >>> import numpy as np >>> x = np.array(12) >>&g…
对于公司组织的人工智能学习,每周日一天课程共计五周,已经上了三次,一天课程下来讲了两本书的知识.发现老师讲的速度太快,深度不够,而且其他公司学员有的没有接触过python知识,所以有必要自己花时间多看视频整理知识点.还是得靠自己,厚积才能薄发. 无知者无畏,但是对于网上众多评价人工智能,很多人知识听起来感觉好高大上,但是深入学习后能劝退一大波人,所谓叶公好龙. 路漫漫,忍住寂寞苦学多练,才能在某天大放异彩. 以下为<Deep Learning Python--python深度学习>前三章中部分…
Deep Learning with Python>第六章 6.2 理解循环神经网络(RNN) 神机喵算 2018.09.01 20:40 字数 2879 阅读 104评论 0喜欢 1 沉下心来,踏实干,会成功的. 6.2 理解循环神经网络(RNN) 前面所有见过的神经网络模型,比如,全联结网络和卷积网络,它们最主要的特征是没有记忆.每个输入被单独处理,也没有保留输入之间的状态.在这种神经网络中,要想处理序列数据或者时序数据,那就需要一次输入整个序列到神经网络模型:把整个序列当作单个数据点.例如…
内容简介 本书由Keras之父.现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉.自然语言处理.生成式模型等应用.书中包含30多个代码示例,步骤讲解详细透彻.由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读.在学习完本书后,读者将具备搭建自己的深度学习环境.建立图像识别模型.生成图像和文字等能力. 作者简介 [作者简介] 弗朗索瓦•肖莱(Franç…
序 "我不想要一份完整的报告,只要给我一份结果摘要就好".我经常发现自己处于这种状况 -- 无论是在大学里还是在我的职业生涯中.我们准备一份全面的报告,但老师/主管却只有时间阅读摘要. 听起来很熟悉吧?嗯,我决定做点什么.手动将报告转换为汇总版本太耗时了,对吗?我能依靠吗 自然语言处理 (NLP) 帮助我的技巧? 这就是使用深度学习进行文本摘要真正帮助我的地方.它解决了一个一直困扰我的问题- 现在我们的模型可以理解整个文本的上下文 .对于我们所有需要快速知道文件摘要的人来说,这是一个梦…
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及二者的任意组合. 支持任意网络架构:多输入或多输出模型.层共享.模型共享等.这也就是说, Keras能够构建任意深度学习模型,无论是生成式对抗网络还是神经图灵机     Keras 有三个后端实现:  TensorFlow 后端.Theano 后端和微软认知工具包( CNTK, Microsoft…
神经网络剖析   训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行   如图 3-1 所示:多个层链接在一起组成了网络,将输入数 据映射为预测值.然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预 测值与预期结果的匹配程度.优化器使用这个损失值来更新网络的权重.  …
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?…
TensorFlow安装keras需要在TensorFlow之上才能运行.所以这里安装TensorFlow.TensorFlow需要vs2015环境,需要wein64位环境,所以32位的小伙伴需要升级为64位系统以后才行. 第一种方式使用pip安装 如果只想专用cpu加速,安装 pip install --upgrade tensorflow如果想使用gpu加速,还需要安装 pip install --upgrade tensorflow-gpu安装以后还需要cuda显卡驱动,可参考https:…
前方预警:windows的坑太多了,抛弃用linux吧 安装theano,提前清空自己的python环境吧,坑太多了,anaconda会自动安装path 一,首先安装python包管理anaconda 下载地址:https://repo.continuum.io/archive/ 下载对应不同的python版本地址:https://docs.anaconda.com/anaconda/faq#how-do-i-get-the-latest-anaconda-with-python-3-5 选择自…
MNIST 数据集 包含60 000 张训练图像和10 000 张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology,即MNIST 中 的NIST)在20 世纪80 年代收集得到.   类和标签 在机器学习中,分类问题中的某个类别叫作类(class).数据点叫作样本(sample).某 个样本对应的类叫作标签(label).…
序言 目的驱动型学习 概念解释 资料 https://www.tensorflow.org/ https://www.imooc.com/video/17186 https://www.cnblogs.com/zhouzhishuai/p/8401103.html Tensorflow中文社区 https://www.bjsxt.com/down/8468.html…
Cython_bbox FairMOT | win10下cython-bbox安装的心酸之路_是阳阳呀的博客-CSDN博客 swig 安装polyiou.py https://blog.csdn.net/qq_34575070/article/details/111554750 swig 编译其他c文件到python文件 torch找不到对应包 pip install torch==1.6.0 -f https://download.pytorch.org/whl/torch_stable.ht…
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle import matplotlib.pyplot as plt def unpickle(filename): import pickle with open(filename, 'rb') as fo: data = pickle.load(fo, encoding='latin1') return da…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输入图片数据,类别 x = tf.placeholder('float', [None, 784]) y_ = tf.placeholder('float', [None, 10]) # 输入图片数据转化 x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层卷积层…
本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类 案例2:新闻分类(多分类问题) 1. 加载数据集 from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) 将数据限定在10000个最常见出现的单词,8982个训练样本和2264个测试样本 len(train_data) 8982 len…
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用Jupyter作为编译器.这是我刚开始使用Jupyter,不得不说它的自动补全真的不咋地(以前一直用pyCharm)但是看在能够分块运行代码的份上,忍了.用pyCharm敲代码确实很爽,但是调试不好调试(可能我没怎么用心学),而且如果你完全不懂代码含义的话,就算你运行成功也不知道其中的含义,代码有点…
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = np.array([[2,1,1],[3,0,1],[1,1,0]]) def convolve(dateMat,kernel): m,n = dateMat.shape km,kn = kernel.shape newMat = np.ones(((m - km + 1),(n - kn + 1))…
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float32", [None, 784]) weight…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_data = np.random.randn(100).astype(np.float32) x2_data = np.random.randn(100).astype(np.float32) y_data = x1_data * 2 + x2_data * 3 + 1.5 weight1 = tf.Va…
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data = x_data * 0.3 + 0.15 print(y_data) plt.plot(x_data,y_data) plt.scatter(x_data,y_data,c="r") plt.show() import numpy as np import tensorflow as…
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = tf.assign_add(counter, tf.constant(1.0)) enqueueData_op = q.enqueue(counter) sess = tf.Session() qr = tf.train.QueueRunner(q, enqueue_ops=[add_op, enqueueDa…