主成分分析(PCA)模型概述】的更多相关文章

数据降维 降维是对数据高维度特征的一种预处理方法.降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的.在实际的生产和应用中,降维在一定信息损失范围内,可以为我们节省大量的时间和成本.降维也称为了应用非常广泛的数据预处理方法. 降维的目的: 使得数据更容易使用 确保变量相互独立 降低很多算法的计算开销 去除噪音 使得结果易懂,已解释 常见降维模型 主成分分析(Principal Components Analysis) 因子分析(Factor Ana…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导.求解.到算法最终的结果,都有着相当的相似. 本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义.本次内容要求读者有一些…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法. 但首先,让我们谈论 降维是什么.作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘制两个在这里. 将数据从二维降一维: 将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量.过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
## 保留版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Learn 可视化数据:主成分分析(PCA) SciKit-Learn 预处理数据 SciKit-Learn K均值聚类 SciKit-Learn 支持向量机 SciKit-Learn 速查 主成分分析(PCA)是一种常用于减少大数据集维数的降维方法,把大变量集转换为仍包含大变量集中大部分信息的较小变量…
基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主成分分析代码实现 一.前言及回顾 从上一篇<PCA数据降维原理及python应用(葡萄酒案例分析)>,我们知道,主成分分析PCA是一种无监督数据压缩技术,上一篇逐步自行写代码能够让我更好地理解PCA内部实现机制,那知识熟悉以及技术成熟后我们可以运用什么提高编码效率? 答案就是:基于sklearn的…
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D…
一.简介   CSS 盒子模型(元素框)由元素内容(content).内边距(padding).边框(border).外边距(margin)组成.     盒子模型,最里面的部分是实际内容:直接包围内容的是内边距:内边距的外边缘是边框:边框之外的是外边距.   内边距呈现了元素的背景:外边距默认是透明的,所以不会遮挡它后面的任何元素.       二.一些说明   内边距.边框和外边距都是可选择的,默认都为 0.   * { border:; margin:; padding:; }   在 C…
CSS 框模型概述 CSS 框模型 (Box Model) 规定了元素框处理元素内容.内边距.边框 和 外边距 的方式. 元素框的最内部分是实际的内容,直接包围内容的是内边距.内边距呈现了元素的背景.内边距的边缘是边框.边框以外是外边距,外边距默认是透明的,因此不会遮挡其后的任何元素. 内边距.边框和外边距都是可选的,默认值是零.但是,许多元素将由用户代理样式表设置外边距和内边距.可以通过将元素的 margin 和 padding 设置为零来覆盖这些浏览器样式.这可以分别进行,也可以使用通用选择…
降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清.今天终于把整个过程整理出来,方便自己学习,也和大家交流. 提出背景 以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运…
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/3793894.html 0. 前言 一年前,我负责的一个项目中需要权限管理.当时凭着自己的逻辑设计出了一套权限管理模型,基本原理与RBAC非常相似,只是过于简陋.当时google了一些权限管理的资料,从中了解到早就有了RBAC这个东西.可惜一直没狠下心来学习. 更详细的RBAC模型非常复杂.本文只做了一些基础的理论性概述.…
主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释结果 降维的方法有:主成…
0. 前言 一年前,我负责的一个项目中需要权限管理.当时凭着自己的逻辑设计出了一套权限管理模型,基本原理与RBAC非常相似,只是过于简陋.当时google了一些权限管理的资料,从中了解到早就有了RBAC这个东西.可惜一直没狠下心来学习. 更详细的RBAC模型非常复杂.本文只做了一些基础的理论性概述.本文资料完全来自互联网. 1. 权限系统与RBAC模型概述 RBAC(Role-Based Access Control )基于角色的访问控制. 在20世纪90年代期间,大量的专家学者和专门研究单位对…
转自:https://blog.csdn.net/yangwenxue_admin/article/details/73936803 0. 前言 一年前,我负责的一个项目中需要权限管理.当时凭着自己的逻辑设计出了一套权限管理模型,基本原理与RBAC非常相似,只是过于简陋.当时google了一些权限管理的资料,从中了解到早就有了RBAC这个东西.可惜一直没狠下心来学习. 更详细的RBAC模型非常复杂.本文只做了一些基础的理论性概述.本文资料完全来自互联网. 1. 权限系统与RBAC模型概述 RBA…
最近太忙,又有一段时间没写东西了. pca是机器学习中一个重要的降维技术,是特征提取的代表.关于pca的实现原理,在此不做过多赘述,相关参考书和各大神牛的博客都已经有各种各样的详细介绍. 如需学习相关数学理论,请移驾.T_T 简单说一下pca的实现,首先对于一个矩阵X,我们计算X·XT,显然这个一个半正定矩阵,可以做特征值分解,然后取出k个最大的特征值及其对应的特征向量就可以表达整个原矩阵.若X·XT=p-1Λp,因为p是单位矩阵,所以p-1=pT,即X·XT=p-1·Λ1/2·(p-1·Λ1/…
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看.在本文中,将会很详细的解答这些问题:PCA.SVD.特征值.奇异值.特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不…
RBAC模型概述 RBAC即角色访问控制(Role Based Access Control) RBAC认为权限授权实际上是Who.What.How的问题.在RBAC模型中,who.what.how构成了访问权限三元组,也就是“Who对What(Which)进行How的操作”.Who:权限的拥用者或主体(如Principal.User.Group.Role.Actor等等)What:权限针对的对象或资源(Resource.Class).How:具体的权限(Privilege,正向授权与负向授权)…
一.K-L变换 说PCA的话,必须先介绍一下K-L变换了. K-L变换是Karhunen-Loeve变换的简称,是一种特殊的正交变换.它是建立在统计特性基础上的一种变换,有的文献也称其为霍特林(Hotelling)变换,因为他在1933年最先给出将离散信号变换成一串不相关系数的方法.K-L变换的突出优点是它能去相关性,而且是均方误差(Mean Square Error,MSE)意义下的最佳变换. 下面就简单的介绍一下K-L变换了. 设,随机向量X ∈Rn(n阶列向量),它的均值向量为mX,则其协…
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主成分分析目标函数优化 3.3 基于最大可分性推导PCA 3.4 核主成分分析(KPCA) 四.主成分分析流程 4.1 输入 4.2 输出 4.3 流程 五.主成分分析优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工…
1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量.更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性.如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论. 因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损…
title: [CUDA 基础]4.1 内存模型概述 categories: - CUDA - Freshman tags: - CUDA内存模型 - CUDA内存层次结构 - 寄存器 - 共享内存 - 本地内存 - 常量内存 - 纹理内存 - 全局内存 toc: true date: 2018-04-28 22:28:08 Abstract: 本文介绍CUDA编程的内存模型个概述,主要讲解CUDA包含的几种内存,以及各种内存的主要特点和用途,这篇作为内存部分地图一样,指导我们后面的写作和学习.…
title: [CUDA 基础]3.1 CUDA执行模型概述 categories: CUDA Freshman tags: CUDA SM SIMT SIMD Fermi Kepler toc: true date: 2018-03-12 23:20:41 Abstract: 本文介绍CUDA执行模型,只比硬件高一层的抽象 Keywords: CUDA SM,SIMT,SIMD,Fermi,Kepler 开篇废话 今天晚上本来都该睡觉了,但是还是决定把这篇文章写出来,毕竟昨天就没写. 这一篇开…
Abstract: 本文继续上文介绍CUDA编程模型关于核函数以及错误处理部分 Keywords: CUDA核函数,CUDA错误处理 开篇废话 今天的废话就是人的性格一旦形成,那么就会成为最大的指向标,或者说一个人的性格思维方式能够决定这个人的全部生命轨迹,比如有人真的爱学习(比如我,嘻嘻嘻)有人真的不爱学习,没有优劣,只是两种生活态度,因为学习这个事你学一辈子也学不完人类智慧的九牛一毛,而不学习可以有更多的时间进行社会实践,融入社会,荣华富贵,享受生命.这是两种性格,没有好坏,毕竟每个人评价生…
Abstract: 本文介绍CUDA编程模型的简要结构,包括写一个简单的可执行的CUDA程序,一个正确的CUDA核函数,以及相应的调整设置内存,线程来正确的运行程序. Keywords: CUDA编程模型,CUDA编程结构,内存管理,线程管理,CUDA核函数,CUDA错误处理 开篇废话 过年了,祝大家新年快乐,新年希望自己学习的东西能都学会 这是一只不爱学习的狗,总看电视! 编程模型就是告诉我们如何写CUDA程序,如果做过C开发的同学或者其他开发的同学都知道做个完整的项目不只是写代码,还有需求分…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
在灵巧手与假手理论中,为了研究人手的运动协同关系,需要采集各个关节的运动学量或者多个采集点的肌电信号,然而由于人手关节数目或者EMG采集点数量较多,加上多次采样,导致需要过多的数据需要处理.然而事实上,这些数据存在相关性,换一种说法就是人手的某一运动被这些数据重复表达了,为了简化数据维度并尽可能的表征原始数据的特征,引入我们今天的主题-主成分分析(PCA)   Ⅰ. 主成分分析(PCA) 主成分分析是一种处理过多维度数据的线性方法,该方法采用组合特征的方法来降维.从本质上来讲就是把高维的数据投影…
这篇博客会以攻略形式介绍PCA在前世今生. 其实,主成分分析知识一种分析算法,他的前生:应用场景:后世:输出结果的去向,在网上的博客都没有详细的提示.这里,我将从应用场景开始,介绍到得出PCA结果后,接下来的后续操作. 前世篇 我们要先从多元线性回归开始.对图9-3作一下多远线性回归 X1——总产值,X2——存储量,X3——总消费,Y——进口总额 从最直白的讲,对Y进行多元线性回归分析,就是在X1,X2,X3前加个系数,然后总体相加的结果,越接近越好. 用R的多远线性归回方法分析看看: cono…
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉…