TFRecord 的使用】的更多相关文章

#写libsvm格式 数据 write libsvm     #!/usr/bin/env python #coding=gbk # ============================================================================== # \file gen-records.py # \author chenghuige # \date 2016-08-12 11:52:01.952044 # \Description # ========…
AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类.层自左向右.自上向下读取,关联层分为一组,高度.宽度减小,深度增加.深度增加减少网络计算量. 训练模型数据集 Stanford计算机视觉站点Stanford Dogs http://vision.stanford.edu/aditya86/ImageNetDogs/ .数据下载解压到模型代码同一路径imagenet-dogs目录下.包含的120种狗图像.80%训练,20%测试.产品模型需要预留原始数据交叉验…
利用TFRecords存储与读取带标签的图片 原创文章,转载请注明出处~ 觉得有用的话,欢迎一起讨论相互学习~Follow Me TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件 TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features).我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protoco…
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_size表示一个batch的大小,num_threads表示使用几个线程进行执行 import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) im…
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Features(feature=tf.train.Feature(int64_list=tf.train.Int64List(value=[value])))) 对于bytes类型: tf.train.Examples(features=tf.train.Features(feature=tf.train.F…
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflow的Estimator实践原理 1. 前言 TFRecord是TensorFlow官方推荐使用的数据格式化存储工具,它不仅规范了数据的读写方式,还大大地提高了IO效率. 2. TFRecord原理步骤 TFRecord内部使用了"Protocol Buffer"二进制数据编码方案,只要生成…
前言在跑通了官网的mnist和cifar10数据之后,笔者尝试着制作自己的数据集,并保存,读入,显示. TensorFlow可以支持cifar10的数据格式, 也提供了标准的TFRecord 格式,而关于 tensorflow 读取数据, 官网提供了3中方法 1 Feeding: 在tensorflow程序运行的每一步, 用python代码在线提供数据 2 Reader : 在一个计算图(tf.graph)的开始前,将文件读入到流(queue)中 3 在声明tf.variable变量或numpy…
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", &quo…
制作自己的TFRecord数据集,读取,显示及代码详解 http://blog.csdn.net/miaomiaoyuan/article/details/56865361…
将图片数据写入Record文件 # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # 读取mnist数据. mnist = input…