树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4)一个点地一个点地往上跳,直到到某个点(3)和另外那个点(5)的深度一样 然后两个点一起一个点地一个点地往上跳,直到到某个点(就是最近公共祖先)两个点"变"成了一个点 不过有没有发现一个点地一个点地跳很浪费时间? 如果一下子跳到目标点内存又可能不支持,相对来说…
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介绍一下倍增算法 我们需要一个数组de[i]来表示每一个节点i的深度,用另一数组parent[i][j]来表示每一节点j向上走2的i次方是哪个节点 我们首先在初始化中算出每个点的深度和它的上一个点是什么(用parent[0][i]表示) 在此后我们进行倍增的处理:parent[1][j]=parent…
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所以,我们可以用遍历路径的方法求 LCA. 但想想都知道啦,这种遍历的方法肯定too slow,最坏情况时可达到O(n),数据大点儿,就光荣TLE了. 所以我们高级的化身——倍增算法就出现了! 谈谈倍增—— 倍增简单来讲就是两个点跳到同一高度后,再一起往上跳,直到跳到一个共同的点,就能找到它们的最近公…
洛谷上的lca模板题--传送门 学了求lca的tarjan算法(离线),在洛谷上做模板题,结果后三个点超时. 又把询问改成链式前向星,才ok. 这个博客,tarjan分析的很详细. 附代码-- #include <cstdio> #include <cstring> ; int n, m, cnt, s, cns; int x, y, z[maxn];//z是x和y的lca int f[maxn], head[maxn], from[maxn]; bool vis[maxn]; s…
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest co…
今天学LCA,先照一个模板学习代码,给一个离线算法,主要方法是并查集加上递归思想. 再搞,第一个离线算法是比较常用了,基本离线都用这种方法了,复杂度O(n+q).通过递归思想和并查集来寻找最近公共祖先,自己模拟下过程就可以理解了. 然后就是在线算法,在线算法方法就很多了,比较常用的是LCA的RMQ转换,然后还有线段树,DP等,最后效率最高的就是倍增法了每次查询O(LogN) 这道题是离线的. 给出离线的Tarjan和倍增算法吧. 代码: #include<iostream> #include&…
转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca-e7-9a-84-e4-b8-89-e7-a7-8d-e6-b1-82-e8-a7-a3-e6-96-b9-e6-b3-95/ 简述 LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点 u 和 v 最近的公共祖先(另一种说法,离树根最…
LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan /*poj 1330 Nearest Common Ancestors 题意: 给出一棵大小为n的树和一个询问(u,v), 问(u,v)的近期公共祖先. 限制: 2 <= n <= 10000 思路: 离线tarjan */ #include<iostream> #include<…
LCA模板题https://www.luogu.com.cn/problem/P3379题意理解 对于有根树T的两个结点u.v,最近公共祖先LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能小.另一种理解方式是把T理解为一个无向无环图,而LCA(u,v)即u到v的最短路上深度最小的点.例如,对于下面的树,结点4和结点6的最近公共祖先LCA(T,4,6)为结点2. 那么这里提供四种思路. 1.暴力至上主义 首先计算出结点u和v的深度d1和d2.如果d1>d2,将u结点向上移动d1…
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了flase...看的时候注意一下! //还有...这篇字比较多 比较杂....毕竟是第一次嘛 将就将就 后面会重新改!!! 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句…