[UOJ #51]【UR #4】元旦三侠的游戏】的更多相关文章

题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是否必胜. $n\le 10^9$ ,$m\le 10^5$ ,$a\ge 2$ ,$b\ge 1$ ,$a^b\le n$ 题解 博弈论+dp 显然可以想到预处理 $f[i][j]$ 表示 $a$ 为 $i$ ,$b$ 为 $j$ 时先手能否胜利.显然由 $f[i+1][j]$ 和 $f[i][j+…
[UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\)推过来. 发现可以从\(sg[a][b]\)推到\(sg[a][b+1]\)的值很少,所以可以直接把这些值全部提前计算出来,这部分大概有\(\sqrt n\)个,剩下的可以推到\(sg[a+1][b]\)而不能推到\(sg[a][b+1]\)的位置可以通过\(a\)以及最大的满足\(x^b\le…
题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态为 (a, b) . 是这样的:我们从后面倒着推,对于一个无法再增加 a 或 b 的 (a, b) 状态,当前走的人必败.这是终止的状态. 而对于一个不是终止状态的状态 (a, b) ,可能有两种后继状态 (a + 1, b) || (a, b + 1) ,我们递归先求出这两个后继状态是必败还是必胜…
题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$f_{i,j}$表示$a=i,b=j$使得胜负,$f_{i,j}$可由$f_{i+1,j},f_{i,j+1}$推出,但这样会$MLE(b=1)$,发现若$a>\sqrt n$,可以直接奇偶性判断. 卡点:原来写的东西不知道为什么锅,换成题解的方式就过了 C++ Code: #include <c…
http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, b$,双人博弈,每次可以给$a$加1或给$b$加1,要求每次操作后$a^b \le n$.不能操作的算输.问先手是否必胜. #include <cstdio> #include <cstring> #include <cmath> #include <string&…
题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点,否则它就是必败点 然后对于b=1特殊处理一下就好了吧…
题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include<cstring> #include<cmath> using namespace std; int read() { ,f=;char ch=getchar(); ;ch=getchar();} )+(x<<)+ch-',ch=getchar(); return x*f; } t…
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\)次询问某个数组中的第几个数的函数. \(n_a,n_b,n_c\leq 10^5\). \(Solution\) 显然的做法是先枚举这个数在哪个数组中,再在三个数组中二分.这个次数是\(log^2\)的. 我们如果每次确定一些数比第\(k\)个数小,那我们可以直接将这些数删掉. (可以假设数组是无限…
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i)\)的和,所以我们尝试通过反演将\(x(i)\)表达成一系列\(b(i)\)的和的形式,那么就可以解出来了. 然后一个简单的化简:\(gcd(i,j)^c\cdot lcm(i,j)^d=i^d\cdot j^d\cdot gcd(i,j)c-d\). \[ \displaystyle b_i=\…
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考虑一个排列真正的有效取模只有当 \(x\geq a_i\)时才行 所以x通过一个排列真正有效的数字必然是从大到小排列的. 求第一问 不难想到将模数从大到小排列 设f[i][j]表示到达第i个模数此时值为j是否可行. 这样dp下来我们只需要取出小于minn的那个可行值最大的即可. 考虑方案数 这样dp同样有效.…