Spark streaming的正确使用。。】的更多相关文章

转自http://bit1129.iteye.com/blog/2198531 代码如下: package spark.examples.streaming import java.sql.{PreparedStatement, Connection, DriverManager} import java.util.concurrent.atomic.AtomicInteger import org.apache.spark.SparkConf import org.apache.spark.s…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
前言spark与hadoop的比较我就不多说了,除了对硬件的要求稍高,spark应该是完胜hadoop(Map/Reduce)的.storm与spark都可以用于流计算,但storm对应的场景是毫秒级的统计与计算,而spark(stream)对应的是秒级的.这是主要的差别.一般很少有对实时要求那么高的场景(哪怕是在电信领域),如果统计与计算的周期是秒级的话,spark的性能是要优于storm的. Storm风暴和Spark Streaming火花流都是分布式流处理的开源框架.这里将它们进行比较并…
本文来自Spark Streaming项目带头人 Tathagata Das的博客文章,他现在就职于Databricks公司.过去曾在UC Berkeley的AMPLab实验室进行大数据和Spark Streaming的研究工作.本文主要谈及了Spark Streaming容错的改进和零数据丢失. 以下为原文: 实时流处理系统必须要能在24/7时间内工作,因此它需要具备从各种系统故障中恢复过来的能力.最开始,Spark Streaming就支持从driver和worker故障恢复的能力.然而有些…
官方文档地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html Spark Streaming是spark api的扩展 能实现可扩展,高吞吐,可容错,的流式处理 从外接数据源接受数据流,处理数据流使用的是复杂的高度抽象的算法函数map reduce join window等 输出的数据可以存储到文件系统和数据库甚至是直接展示在命令行 也可以应用ml 和graph processing在这些数据流上 spar…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching…
转载自:http://blog.csdn.net/erfucun/article/details/52312682 本博文主要内容包括: 技术实现foreachRDD与foreachPartition解析 foreachRDD与foreachPartition实现实战 一:技术实现foreach解析: 1.首先我们看一下Output Operations on DStreams提供的API:   SparkStreaming的DStream提供了一个dstream.foreachRDD方法,该方…