1 介绍(INTRODUCTION) 本文主要对最近的 proposal 检测方法做一个总结和评价.主要是下面这些方法.  2 Detection Proposal 方法(DETECTION PROPOSAL METHODS) 作者将 Detection Proposal 分为两类,grouping method (将图片分为碎片,最后聚合)和 window scoring method (对分成的大量窗口打分). 2.1 分组 proposal 方法(Grouping proposal met…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Mask R-CNN 论文链接:论文链接 论文代码:Facebook代码链接:Tensorflow版本代码链接:] to compute the exact values of the input features at four regularly sampled locations in each…
CVPR2020论文解析:实例分割算法 BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.00309.pdf 摘要 实例分割是基本的视觉任务之一.近年来,全卷积实例分割方法因其比Mask R-CNN等两阶段方法简单.高效而备受关注.迄今为止,当模型具有相似的计算复杂度时,几乎所有这些方法在掩模精度上都落后于两级掩模R-CNN方法,留下了很大的改进空间.在这项工…
人脸真伪验证与识别:ICCV2019论文解析 Face Forensics++: Learning to Detect Manipulated Facial Images 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.pdf 摘要 合成图像生成和处理技术的迅速…
人脸标记检测:ICCV2019论文解析 Learning Robust Facial Landmark Detection via Hierarchical Structured Ensemble 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Zou_Learning_Robust_Facial_Landmark_Detection_via_Hierarchical_Structured_Ensemble_ICCV_201…
SLAM架构的两篇顶会论文解析 一. 基于superpoint的词袋和图验证的鲁棒闭环检测 标题:Robust Loop Closure Detection Based on Bag of SuperPoints and Graph Verification 作者:Haosong Yue, Jinyu Miao, Yue Yu, Weihai Chen and Changyun Wen 来源:IEEE/RSJ International Conference on Intelligent Rob…
How good are detection proposals, really? J. Hosang, R. Benenson, B. Schiele Oral at BMVC 2014 http://rodrigob.github.io/ https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/object-recognition-and-scene-understand…
LTMU 第零部分:前景提要 一般来说,单目标跟踪任务可以从以下三个角度解读: A matching/correspondence problem.把其视为前后两帧物体匹配的任务(而不考虑在跟踪过程中物体外观的改变,也就是不会因为物体外观更改而更改模型). An appearance learning problem.外观学习的任务(需要在测试时fine-tune网络).例如MDNet A prediction problem.一个目标检测的任务,例如:ROLO = CNN + LSTM.就是使…
人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:https://arxiv.org/pdf/1912.05656.pdf Code and pretrained models are available at: https://github.com/mkocabas/VIBE 摘要 人体运动是理解行为的基础.尽管在单图像三维位姿和形状估计方面取得了进展,…