关于LIS和LCS问题的o(nlogn)解法】的更多相关文章

o(n^2)解法就不赘述了,直接解释o(nlogn)解法 LIS最长递增子序列: 先明确一个结论:在长度最大为len的递增序列里若末尾元素越小,该递增序列越容易和后面的子序列构造出一个更长的递增子序列.也即认为,长度为len的递增子序列中末尾元素最小的那种最需要保留.我们不妨称这个目前找到序列为到目前为止的 最优序列. 因此设置一个数组lis[i]其中 i 表示此时最大递增序列的长度,数组值表示此时达到 i 的最优序列(也即 长度为len的递增子序列中末尾元素最小的那种)的末尾元素. 那么此时只…
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由于是用迭代法,所以计算DP[i][j]前,DP[i-1][j]和DP[i][j-1]就都已经计算出来了,不难理解就可以得出状态转移方程: DP[i][j]  = DP[i-1][j-1] + 1;   如果a[i] == b[j] MAX(DP[i-1][j], DP[i][j-1])  如果a[i…
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由于是用迭代法,所以计算DP[i][j]前,DP[i-1][j]和DP[i][j-1]就都已经计算出来了,不难理解就可以得出状态转移方程: DP[i][j]  = DP[i-1][j-1] + 1;   如果a[i] == b[j] MAX(DP[i-1][j], DP[i][j-1])  如果a[i…
morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len.先判断A[t]与D[len].若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t]:否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t].令k = j + 1,则有A [t] &…
LIS(nlogn) #include<iostream> #include<cstdio> using namespace std; ; int a[maxn]; int n; int lis[maxn]; ; int find(int x){ ,r=len,m; while(l<r){ m=l+(r-l)/; if(lis[m]>=a[x]){//这里若去掉等号即为 非严格递增序列 r=m; } else{ l=m+; } } return l; } int mai…
题意:题意就是坑,看不大懂么,结果就做不对,如果看懂了就so easy了,给定n个事件,注意的是, 它给的是第i个事件发生在第多少位,并不是像我们想的,第i位是哪个事件,举个例子吧,4 2 3 1, 表示的是第一个事件发生在第四,第二个事件发生在第二位,第三个在第三位,第四个在第一位. 然后输入n个答案,求有多少个事件相对位置是和原来一样的. 那么知道输入好办了,我们只需对输入做一下预处理,就变成了LIS. 代码如下: #include <iostream> #include <cstd…
DP是真的难啊,感觉始终不入门路,还是太弱了┭┮﹏┭┮ DAG上的DP ​ 一般而言,题目中如果存在明显的严格偏序关系,并且求依靠此关系的最大/最小值,那么考虑是求DAG上的最短路或者是最长路.(据说还有路径计数的问题,我倒是没遇到,哪位大大看见提醒一下呐) 这类问题可以使用记忆化搜索直接解,但是有爆栈的风险. 数据比较大的情况下,可以使用先求拓扑序,然后按照拓扑序(bfs求拓扑序),进行递推即可. 背包问题 ​ 1.完全背包 for (int i = 1; i <= n; i++) for (…
[LIC--最长递增子序列问题] 在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. O(nlogn)算法:所需要的数组 1.数组T 2.增设一个minT[]数组,minT[x]存放长度为x的最长上升子序列的最小末尾数. 3.dp[i],从一到元素T[i]结尾的最长上升子序列的长度: 具体原理转自网络: 设 T[t]表示序列中的第t个数,dp[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设dp…
题目 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是\(\le 50000\)的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入格式 \(1\)行,若干个整数(个数\(\…
openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上…