predict.glm -> which class does it predict?】的更多相关文章

Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question about logistic regression in R. Suppose I have a small list of proteins P1, P2, P3 that predict a two-class target T, say cancer/noncancer. Lets further s…
Codeforces Round #258 (Div. 2) Predict Outcome of the Game C. Predict Outcome of the Game time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output There are n games in a football tournament. Three…
from __future__ import division, print_function, absolute_import import tflearn import numpy as np import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import tensorflow as tf step_radians = 0.001 steps_of_history = 10…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
统计学上分布有很多,在R中基本都有描述.因能力有限,我们就挑选几个常用的.比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示. 统计分布每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数函数,r――随机数函数.比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm.下面我们列出各分布后缀,前面加前缀d.p.q或r就构成函数名:norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心) unif:均匀,exp:指数,wei…
data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks <- read.csv(file.path(data, 'oreilly.csv'),stringsAsFactors = FALSE) library('tm') documents <- data.frame(Text = ranks$Long.Desc.)row.names(documents) &…
第五章习题 1. 我们主要用到下面三个公式: 根据上述公式,我们将式子化简为 对求导即可得到得到公式5-6. 2. (a) 1 - 1/n (b) 自助法是有有放回的,所以第二个的概率还是1 - 1/n (c) 由于自助法是有放回的,且每次抽样都是独立事件,所以概率是(1 - 1/n)^n (d) 答案是1-(1-1/5)^5 = 67.2% (e) 63.4% (f) 63.2% (g) pr = function(n) return(1 - (1 - 1/n)^n) x = 1:1e+05…
第四章习题,部分题目未给出答案 1. 这个题比较简单,有高中生推导水平的应该不难. 2~3证明题,略 4. (a) 这个问题问我略困惑,答案怎么直接写出来了,难道不是10%么 (b) 这个答案是(0.1*0.1)/(1*1),所以答案是1% (c) 其实就是个空间所占比例,所以这题是(0.1**100)*100 = 0.1**98% (d) 这题答案显而易见啊,而且是指数级别下降 (e) 答案是0.1**(1).0.1**(1/2).0.1**(1/3)...0.1**(1/100) 5. 这题…
广义线性回归模型 广义线性回归模型 例题1 R.Norell实验 为研究高压电线对牲畜的影响,R.Norell研究小的电流对农场动物的影响.他在实验中,选择了7头,6种电击强度, 0,1,2,3,4,5毫安,每头牛被电击30下,每种强度5下,按随机的次序进行,然后重复整个实验,每头牛总共被电击60下.对每次电击,相应变量--嘴巴运动,或者出现,或者未出现.下表中的数据给出每种电击强度70次试验中响应的总次数.试分析电击对牛的影响 电流(毫安) 试验次数 响应次数 响应的比例 0 70 0 0.0…
1.适合阅读人群: 知道以下知识点:盒状图.假设检验.逻辑回归的理论.probit的理论.看过回归分析,了解AIC和BIC判别准则.能自己跑R语言程序 2.本文目的:用R语言演示一个相对完整的逻辑回归和probit回归建模过程,同时让自己复习一遍在学校时学的知识,记载下来,以后经常翻阅. 3.本文不涉及的部分: (1)逻辑回归和probit回归参数估计的公式推导,在下一篇写: (2)由ROC曲线带来的阈值选择,在下下一篇写: (3)本文用的数据取自王汉生老师<应用商务统计分析>第四章里的数据,…